

Febrvary 10, 296:1

MBTHDNS OF TREATMENT OF DISPIACEMENT INTEGRAL EQUATIONS

FORK DOAE BY:
B. Fiskilkel
S. Frankol
A. Nalacn
L. Nolson
A. aumary of application tochniques and all of. tho graphs rofarrod to in this roport are bound esparatyly in LA-53*A.

TABIE OF CONTENTS
Page
$A B S T R A C T$ 5
INERODUCTION 6
CHAPTER I.THE GENERAL THEORY OF DISPLACEMENT 9
Integral equations 9
The associatod differential oquation 9
The charactoristic equation 17
Solution for halfainfinite medium 13
Exirapolated end-point 20
Vaile at ino surisce 22
Trmped hnlf~infinito medium 2.5
Solution with transverse wave 25
COMPTER II. THE SLAB AND SMHERE 28
GIJATPER III. EXAMPLES 31
Section 1. The Yukawa learnel 31
Equivelence to thermal diffusion equation 31
Soction 2. The ffilno kernel 36
Derivation of integral equation 36
Evaluation of the extrapolated end-point 39
Extrepolatod end-point at tamped boundary 41
Accuracy of the end-point method 12

 UNCLASSIFIED

End-point method for finitely tampad spheres 43
Value of the solution at the surface 44
Angular distribution of flux at the boundary 48
Character o: solution near the boundery 44
Section 3. The Gauss kernel 50
Derivation of Gauss leernel by compounding many olementary distribution 3 50
Extrapolated ond-point treatmoat 51
Value of the solution at the surface 54
Section 4. The Christy kernel 55
Derivation af the Yukawa kernel as the distribution function of overall displaceraents compounded from elsw rentary displacements exponentially distributed in number. 55
Derization of the Christy kernel for the watermboiler 56
Fermi formule for meen r^{2} in hydrogenous material 60
Nomenta of the distribution for slowing in hydrogen 61
Monents of dietribution for alowing in hydrogen plue heavy material 65
Mindex theory 71
Constants in the Christy kernel 72
Critical mass of watar-boilor 73
MMCLASSFIFED
-4
gBapter IV. OTEER HETHODS OF SOLDTION AND RELATED PROBLEMS '75
Numericel nethod 75
Variation method $?$
Integral boundary condition method 75
Albeda of an isotropic surfirce source Ss
Detonetion probebility for hypercritical diatributions 9
CHHPTEH V. EXTENSTON OF EXTRAPOLATED ENDAPOINT METHOD TOR OTHER SEAPES 93
Ambing 2. Tho infinite oglincier 02
Soction 2. Finite oylinder 95
Untamped oylinders 95
Tanped oyinders 97
Soction 3. Rectangular oolids 97
Section s. Complicsted shapes 99
Cufreen vi. tre myaldarion of equivalent constants 102
The velocity and anglo-agopendent iniogrnl oquation 102
Equivalence of tho poltzman equation and the intogrel equation 203
Neaticn 1. Anisotropic ocattoring 105
Soction zo Volooity dopondanco 108

 $-5-$

ABSTRACT

This paper is dividad into two parte, LA@53 and LA-5\% A. LA○53 ireata in groat dotail the various methods which have bson used in the treatmerit of tho physical probloms of thia projoet which are ropresontable in torms of integral oquations. These problems are primsrily thoze involving the datermination of critical sizes and multiplisation racos for various configuxations of active and tamping materials. A fow rolated probleme inoluding age oelculations, predotonation probebilities, and a simple albedo problem are also discussed.

A number of praphs havo been prepared giving the mathamatical data involved in the solutions of tinese problems and many of the solutions themsolvea. A brief recapitulation of the methode of solutions of the more atanderd proiblens has been prepared. This may be ueod oither separately or in conjunctian with the mein pert of the paper. This reoopitulation or "recipe book" sud the full oollcotion of graphs oompose LA-53 A.

 UNCLASSIFIED

-6-

METHODS OF TREATMENT OF DISPLACEMENT INTEGRAL EQUATIOMS

INTERODUCTION

In many problems involving the multiplication and diffusion of neutrons in fissionable and acattering material, integral equations of the bypue

$$
n(x)=\int d \underline{x}^{8} n\left(x^{\prime}\right) W\left(\left|x-x^{8}\right|\right) F\left(x^{8}\right)
$$

are net. It is proposed to discuss here the propertiea of equations of this type, the methods of solution which havo so far been used, and the results obtained. Equations of this type have been used to describe the physical basis of the determination of the critical sizes and multiplication rates of masses of fissionable material, with or without tampors, and such relatod problems as the determinations of albados and setonation probabilities of hypercritical gedgets.

Soms of the methods of treatment of the problsms discussed here are considerably older than the present problems. The differential diffusion theory was taken over frong gas kinetic theory. The simplest from of the extra-

 APPFiog

-7-
similar problems, and more frequently, as the Ritz mothod, to differontial eipenvelue problems. Msny of the mathematical techniques eraployed here are borrowed from olaasical probability theory.

In Shapter I the existing body of mathamatical thoory of displacementi integral equations is examined. A large part of this treatment is taken Irom the review of the subject written by F. Smithies (). His treatment is prosentied in a simplified and less rigorous manner and for the most part tranam aribed into the notation customary in this project.

In Chapter II the reduction of slab and sphere problems to onedimensional form is discussed.

In Chapter III thase methode are arplicd to four special cases of displacement integral equations. The first of these is the integral aquation with the kernel $x=e^{-\left|x-x^{2}\right|}$, which posses a simple exact solution and is thorefore a convenient example for displaying the propertios coumon to equetions of this typa. The accond kernel treated is the oxponential integral, which is the one dimensional form of the Milne kernel, which occurs in the molst familiar problems of this work. This equation is treated in oonaiderable detail. The remaining two examples are those of the Gauss kernel and the kernel desoribing the water boiler problem.

In Chepter IV other methods of treatment of these probloms and abscoiated problems are discnssed. Among these are tie variation and numsrical

- $8=$
notinges of troatment of the integral equations and albedo and nonosicadyostato problens.

In Ghepter V the extension of the ond-point method to other shapes then the slab and e?knra is considered. The applicebility of the mathod to oyindisrs and rootangular solicis is primarily baeed on the check afrorded by the veriation esthod wich has boon applied to a fow such oonizgurations. The geteroion of the ung of thin method to sases where no such check is availsbis is discuseor.

In Chenitex VI the choice of ouitable constants for the integral equation is stwifed. In the simplo form of the integral equation a number of physicel simplafications are usod. All scattoring processos are assumed isocropic and clastic, and the inhomogencity in energy of the fission spoctrum is neeghoted. The offect of the two approximations is studied to determine oppropijats values to use for the cross soctions and onergy.

CHAPTER I. THE GENERAL TGEORY OF DISPLAGEMENT
INTEGRAL EQUATIONS

The general type of integral equation which we troat may be written 2. 8

$$
\begin{equation*}
n(\underline{r})=0 \int d \underline{r}^{p} F\left(\underline{x}^{q}\right) n\left(\underline{r}^{\prime}\right) K\left(\left|\underline{r}-\underline{r}^{\prime}\right|\right) \tag{1.1}
\end{equation*}
$$

where the variable \leq is in ono or more dimensions, usually one or three. The intogration is to be carried out over all space or over that part of space for which $F(\underline{x}) \neq 0$. In most of the problems treatod $F(\underline{r})$ ie piecowiee constant and of one oign, usually having a value differont from zero in only one or two regions. In general there will exist a denumerable (except where $F: \neq 0$ over an infinite volume) infinity of oigenvalues, c, ono of which is the least. Frequently this least oigenvalue and the corresponding eigenfunotion are of primary interest.

The Associated Differential Equation

 constant throughout all space. Although these problems are in timmselves of 1ittle physical interest their study is of value in that it throws light on the character of the solutions $n(\underline{y})$ in the more interesting problems in rogions far removed $\left[i . e\right.$. beyond the reach of the kernel $\left.K\left(\left|\underline{x}-\underline{x}^{\prime}\right|\right)\right]$ from

any boundary. For such equetions the conetent F may be absorbod in the -igenvaluo c.

$$
n(\underline{r})=\sigma \int d \underline{r}^{\prime} n\left(\underline{z}^{v}\right) K\left(\left|\underline{r}-\underline{r}^{y}\right|\right)
$$

where the integration is carried over ell space. If the kernel is is reasonably regular, the solutions $n(5)$ of (102) are of necossity analytic. In the following it will bo assumad that this is the case. Equation (1.2) mry do sowritton as

$$
n(\underline{r})=c \int d \underline{r}^{\prime \prime} \mathbb{K}\left(\left|\underline{r}^{0}\right|\right) n\left(\underline{r}+\underline{r}^{\prime}\right)
$$

$n\left(\underline{r}+\underline{\underline{r}}^{\prime}\right)$ may now bs expended as a Taylor series in \underline{s}^{\prime}. Only the even terms of the serios will contribute to the intogral. For a throe-dinensional spaco the equation then takes the form

$$
\begin{align*}
& n(\underline{r})=0 \int d x^{\prime} K\left(\left|\underline{r}^{\prime}\right|\right)\left[n(r)+\frac{1}{2}\left(x^{\prime 2} \frac{\partial^{2} n(r)}{\partial x^{2}} * y^{8} 2 \frac{\partial^{2} n(\underline{r})}{\partial y^{2}} * z^{* 2} \frac{\partial^{2} n(r)}{2 x^{2}}\right)\right. \\
& =o\left(n(\underline{r}) M_{0}+\Delta n(\underline{s}) M_{2} / s!+\Delta \Delta n(\underline{I}) M_{4} / 5!+\ldots \ldots\right) \tag{1,3}
\end{align*}
$$

Where α_{n} is the nith moment of the distribution $K\left(x^{7}\right)$. If o Mo is cloce to one, the second and later terms of the expansion may be small corapared with the first. In this case it may be a useful approximation to negiect all terms

-11.
diffusion oquation

$$
\begin{equation*}
\left[(1 / 3!)\left(M_{2} / M_{0}\right) \Delta=\left(1-c M_{0}\right) /\left(c M_{0}\right)\right] n(\underline{r})=0 \tag{1,4}
\end{equation*}
$$

A.s the approximation loading to this diffusion equation is valid only if cMo is close to one, equation (1,4) may just as well be written

$$
\left[(\sqrt{3}:)\left(\mu_{2} / M_{0}\right) \Delta 0\left(2=c M_{0}\right)\right] n(\underline{x})=0
$$

Whe approxination leading to (1.4) and (1.4') is almost never satisfied in sthe present work It is therefore necessary to look for solutions of (1.5). Sinco $n(\underline{x})$ is analytic (except, porhaps, at infinity) it can be expressed es a suparposition of "waro-functions". $n_{k}(\underline{r})$, satisfying the equations

$$
\begin{equation*}
\left(\Delta \propto z^{2}\right) n_{k}(\underline{r})=0 \tag{1.5}
\end{equation*}
$$

This form of representation of $n(\underline{r})$ is just the Laplace or Fourier trenso formation which plays a contral role in all this theory. It aan be seen by substitution that $n_{K}(\underline{r})$ will satiafy oquation (1.3) if and only if

$$
\begin{equation*}
c\left(M_{0}+k^{2} M_{2} / \pi!+k^{4} u_{2} / 5^{!}+\ldots \ldots\right)=2 \tag{1.0}
\end{equation*}
$$

This ia known es the "cheracteristic equation" of (1.3). The general solum
 s.

2.1. of the values of k satisfying the characteristic equation, For most of tho problems which we treat, the ohareoteriatic equation has only one ablution, i.e.o specifies a definite value for $|k|$. Tho general solution is

The Characteristic Equation
This result is more clearly derived by the use of a Laplace or Fourier transform. Such a transformation is motivated by the feat that tine kernel of the integral equation is a displacement operator, a function of $\underline{s}=\mathrm{r}^{\prime}$ alone, suggesting an expansion in the eigenfunction of displacement operators, ${ }^{k-E}$. Forming the Fourier transform of equation (1.2), one has

$$
\begin{aligned}
& n_{k}=\int \alpha \underline{e^{i k}-\underline{r}} n(\underline{x}) \\
& =c \int d \underline{x} \theta^{i \underline{k} \cdot \underline{r}} \int d \underline{x}^{\prime \prime} n\left(\underline{x}^{\prime}\right) K\left(\left|\underline{s}-\underline{x}^{\prime}\right|\right)
\end{aligned}
$$

$$
\begin{align*}
& =0 n_{k^{K}} K_{k} \tag{1.7}
\end{align*}
$$

where z_{k} is tine Fourier transform of the kernel.

$$
\begin{equation*}
n_{l_{2}}\left(1-c K_{k}\right)=0 \tag{1,0}
\end{equation*}
$$

Tres n_{y} cen differ from zero only where the characteristic equation is
 is identioal with ($1: 6$) which is the power series expansion of K_{k} and may rowdily be obtain

It is clear from (1.8) that the above is the only condition imposed by the intagral aquation; ioos, that the integral equation is antisioiod by an arbitrary solution of

$$
\left(\Delta+k^{2}\right) n_{x}(x)=0
$$

for any k satisfying the characteriatic equation It is evicent iron thje aolution that in tho intorior of a finite redium the solution of (lad) hass the charactar of the wave function, $n_{j r}(I)$, of the symmetry appropriate to *he atape of tho modium. Noar the boundaries the actual solution will deviate from this wave function. The natura of this doviation and the boundary condifion thereby imposect on the a oymptotio solution $n_{k}(\underline{r})$ is the aubject of tics inmainder of thfs ohapter.

Solution for Hali-Infinite Hedjum

The simplest case in which to study the boundery offeots is that of a "halfoinfinite" medium, one oxtending indefinitely on one side of a plarto boundary. In this ohaptor we will treat only the spacial care in which the solution, $n(\underline{r})$, is a function only of the distance, x, from the boundery, Where thore is only one nonozoro valuo of $P(\underline{y})$, the "untampod oase. x wiz3. bo takan positivo in that diraction. Where F iagroater than zero on both aides, the "canped" oase, x will be taken positiva on tha aide on which F

APPROVE $\mathrm{P} O \dot{R}$ PUBLIC RELEASE

agurijon (1.2), the two coordinaties, y and z, enter only in the kernol and oan be intogratod cut. The integral equation then hes the form

$$
\begin{equation*}
n(x)=0 \int_{0}^{\infty} d x^{3} n\left(x^{v}\right) K\left(\left|x=x^{8}\right|\right) \tag{1.9}
\end{equation*}
$$

Fieno the onstant c and the kernel it aro not nocesagrily tho ame ab those soourring in the threo-dimonsional form.

Sinco in equation (1,9) the integration extende only from zoro to plus infinity, it is not imnodictoly olear tinst the samw teinmigus is tihat of the full opon space can be applied. If, howover, the funotion $n(x)$: winich is defined by (1.9) for all positive and negative x, is brokon up into two parto such that

$$
\begin{align*}
& n(x)=f^{\prime}(x)+g(x) \\
& f(x)=0 \text { for } x \div 0 \\
& B(x)=0 \text { for } x<0 \tag{1.30}
\end{align*}
$$

thon the intogrel oquation (1.9) oan ts written in torma of an integral ovor Ghe full range of x so that undar loplace traneformation it bocomos factormbie.

$$
\begin{aligned}
& \text { ! ! ! ! ! ! ! ! ! ! } \\
& \operatorname{Tosin} \sin
\end{aligned}
$$

$$
\begin{aligned}
& \varphi(x) \equiv \int_{-\infty}^{-\infty} 0^{-j x} g(x ; \\
& M(k) \equiv \int_{-\infty}^{\infty} d x 0^{-\operatorname{lnc} x} K(x)
\end{aligned}
$$

\therefore :\% thoso parts of tho oomplox koplano for which these intograls oxist and by analytic extonaion olsowhere. The Laplace tranaform of equation (ioll) acir becomes

$$
\begin{align*}
& F(k)+G(k)=0 \int_{-\infty}^{\infty} d x 0^{-k x} \int_{-\infty}^{\infty} d x^{i} g\left(x^{0}\right) E\left(\left|x \propto x^{p}\right|\right) \\
& =c \cdot \int_{-\infty}^{\infty} d\left(x-x^{v}\right) e^{-k\left(x-x^{p}\right)} K\left(\left|x-x^{v}\right| j \int_{-\infty}^{\infty} d x^{v} e^{-k c x^{p}} E\left(x^{q}\right)\right. \\
& =0 \vec{Z}(k) G(k) \tag{1,12}
\end{align*}
$$

This oquation has a unique moaning only if thero oxiata a atrio parallel to tino lmaginary axis in whioh all of tho integrals defining theso Lapleco transXosma oxisto If thia in the case then funotions $G(k)$ and $E(k)$ winich astisíy ($\% .12$) and ars consistent with the rostriotiono of (2.10) defino a unioue eolution to equation (1.9). It will bo assumed in the following that this is the sane.

The rastrictions imposed on the forms of $n(x)$ and $K(x)$ by this assumption are quite woak. If the value of c is suoh that the asymptotic solution for $G(x)$ is sinusoidsl, i oo. if the charectoristic equation has roota oniy on the imaginary axis, then the intepral defining $G(k)$ must exist for all values of k in the ripht opon half plano. fhjs integral exionds

RELEASE
wne zers to plus infinity oi which is bounded, the other decaying exponantielly in tho real part of k is positivo. The oharanter of $i(x)$ for large nogative x is daterminod by the charncter of the kernol for large values of its argunent. For the integral

$$
F(k)=\int_{-\infty}^{0} d x f(x) e^{-k x}
$$

te) ponverge in vertioel strig in tho right half knplane it is only necossary that $f(x)$, hence alzo $X(|x|)$, Geoay exponentially for large nagative x_{0} 15 then for all $x \geq 0$

$$
I(|x|)<N e^{-b x}, \quad N>0, \quad b>0
$$

tine intoprals definin; $F(x)$ and $\vec{E}(x)$ are convergont if the real part of t. lies between 2070 and b, and equation (1.12) hse a unique mersinge If the vilue of 0 is buch as to give a hyperbojico asymptotio solution, 1.e. if the characteribicio ecuation is satiofied for values of k osf the imaginary axis, then the asymptotic solution $g(x)$ may incrosae exponentially for large x. This exponential increase cannot, however, be more rapid than the ceoay of the kernel or the integral in equation (1.9) will not converge. In this aage the integral defining $G(k)$ will not converge throughout the right half li-plane but only for values of k of which the real part is greater than the real part of the root of the oharacteristic equation determe ining the abymptotic bohavior of $g(x)$. Since, heverer, the kernel must have

-17.
an asymptotic decay rete greater than the real part of this root tho intograle ciafining $\bar{Z}(k)$ and $F(k)$ will convorge in a strip in tho ripht half keplane Whiah overleps the rcgion of convergenoe of $Q(x)$.

The restrictions imposed to make (1.12) meaningful are thereforo eatisfied for any kernel which admits a solution of the integrel equation. Sinco in tho problems of interest the oxistonoe of a solution is guarantoed by the nature of the physical problem, the restriction imposed above will be batinfied in all such problems.

Since the integrands of the integrals defininf $F(k)$ and $G(k)$ fail tio vaniah only for negative and positive values of x respectively, these jintegrals will correspondingly converpo everywhere to the left and right resc pectively of the common strip of converponce. $G(k)$ will therefore be analytie everywhere to the right uf the left hand boundary of this strip, and $F(k)$ ewerywhere to the left of the right boundary. The analytic extonsion of $F(k)$, q(k), and $\tilde{K}(k)$ may be oarried out 60 as to make oquation (1.12) valid for elll k. The solution of aquation (I.9) is now reduced to the problem of jinding two functions $F(k)$ and $G(k)$ satisflying (1.12) and which have a common atrip of analyticity and are analytio left and right of this strip respeotively. Two suoh funtations aro readily found ify the following device: Denote by $P(k)$ the function $c \hat{K}(k)$ - 1 . Then equation (1.12) reads

-18-
hence

$$
\begin{equation*}
\ln P(k)=\ln F(k)-\ln G(k) \tag{1.13}
\end{equation*}
$$

Thus lin $P(5)$ is expressed as the sum of two porte which ere analytic left and right respectively of the common atrip except for the roots, if any, of If (k) and $G(k)$. The roots of the characteristic equation are here represented. $12 s$ singularities in $\ln P(k)$. If now a vertical strip containing no singularity of In $P(k)$ iss chosen, this decomposition can be effected by expressing $i_{r,} P(k)$ as a Cauchy integral.

$$
\begin{align*}
\ln P(k) & =(1 / 2 \pi i) \int_{C} \frac{d k^{8}}{k^{1}-k} \ln P\left(k^{8}\right) \tag{1.15}\\
& =(J / 2 \pi j)\left[\int_{L}+\int_{R}\right] \frac{d k^{8}}{k^{8}-k} \ln P\left(k^{8}\right)
\end{align*}
$$

 other oontour will be so doformod as to oncloge k but no singularity of In $P\left(x^{\prime}\right)$. The intogral over tho contour P_{0} will thereforo be anelytio for all k within or to the loft of tho atrip, snd the integral over L within or to tho right. If now tha interral over 12 is idontified with fin $\mathrm{F}(\mathrm{k})$ and the integral over I with-lnf(k) the conditions reguired in the decomposition are satisijed. This docomposition is unique onoe the strip is ohooen. This in appropriate since anotiar deoomposition also setisfyinf the conditions im posod mast aiffer from this only in the addition to lou and subtraction from lim of a function of k which is analytic throughout the entire k plane, ioea a constant: This change will not affect tho character of the solution, $\mathrm{E}(\mathrm{x})$, kut may be convonient in the eveluation of tho integrale. Froquentiy tho constant addod and subtracted wi2l be logarithmically infinito. The matrematical trsinsgression required in this process can be avoided if it is 80 desirad by faotoring out of $P(k)$ an appropriato polynomial in k so as to make the integrals ovar L and R separately convorgont (cf. F. Smithies ${ }^{2}$), The solution of (2.9) is then given by

$$
\begin{align*}
& \operatorname{An} G(k)=r(2 / 2 \pi i) \int_{L} \frac{d k^{2}}{k^{y}-k} \ln \left[c \bar{x}\left(k^{z}\right)=1\right] \tag{1.15}\\
& g(x) \alpha \int_{=10+\delta}^{100+\delta} d k \theta^{k x} k(k) \tag{1.16}
\end{align*}
$$

tho latter intagatation being carried up tho strip of convergonoo.

Extrapolated End-Point
In most of the problems of interest those two integrations can not be porformod analytically. In order to find the complete form of $g(x)$ it is therefore necossary to carry out a double numerical integral. As this process is excoodingly laborious, it has not been cone. However, a number of inportant propertios of the solution can be found with only a single numorical integral. For a sinusoidal solution $f(x)$ will have the form

$$
\begin{equation*}
g(x)=A\left\{\sin \left[k_{0}\left(x+x_{0}\right)\right]+h(x)\right\} \tag{1.27}
\end{equation*}
$$

whero $h(x)$ approaches $2 \theta r 0$ for large x. Here ix ${ }_{0}$ is a root of the charm acteristic equation. This must be true sinco far from the boundary the ohersoter of the solution is just that of the sine solution of the full-space problem. It is to bo oxpectod that the deviation from the asymptotio solution, $h(x)$, will fall off with increasing x about as rapidly as the kernel. The rost interosting property of tho solution $g(x)$ is the phase of the asymptotic solution, which may be expressed by the extrapolated end-point, x_{0}.

$$
\begin{aligned}
& G(k)=\int_{0}^{\infty} d x e^{-k x} g(x)
\end{aligned}
$$

Tiais expansion hes polea at \pm iko. In the neaghborhood of these poles $\mathrm{H}(\mathrm{k})$ is bounded, hence the logerithif of $G(k)$ is primarily determinod by the term which becomes infinita.

$$
\begin{align*}
& \ln G\left(i k_{0}+\epsilon\right)=\ln (A / 2 i)+i k_{0} x_{0} \circ \ln \epsilon+O(\epsilon) \\
& \ln G\left(-i k_{D}+\epsilon\right)=\ln (-A / 2 j)=i k_{0} x_{0}-\ln \epsilon+O(\epsilon) \tag{1.28}
\end{align*}
$$

The difference between these two expressions in the limit of vanishing ε is 2ikox $x_{0}+\ln (-1)$. In evaluating this limit of the difference fron the integral (1,25) giving $\ln G(k)$, we express $\ln G(k)$, the negative L integral, as the R integral minus ln $P(x)$. The A integral is finite in the neighborhood of the two poles, tikg, as its contour ingy be taken so as to remain a finite distance from thom. $P(k)$ is the Laplace transform of an oven function and is therefors itsolf even. Its derivative is odd, hence $\ln P\left(i k_{0}+6\right)=\ln P(-i k$ * $\}$ is Yr. (-1) $+0(\varepsilon)$. The two terms $\ln (-1)$ combine to give some multiple of $2 \pi i$. The various multiples give oxtrapolated ond-points differing by 2 half movLength. It is convenient always to define the extrapolatod end-point as the diatance beyond the boundary of the first root of the exymptotic solution. Thon we have

$$
\begin{aligned}
& 2 i x_{0} x_{0}=(1 / 2 \pi i) \int_{R} d k^{\prime} \ln P\left(k^{\prime}\right)\left[2 /\left(x^{\prime}-i k_{0}\right)-2 /\left(x^{\prime}+i k_{0}\right)\right]
\end{aligned}
$$

If the same derivation is follarred through for the sase of a hyperbolic interior solution, the same result is found for the zero of the asymptotic aclution, sinh $k_{0}\left(x+x_{0}\right)$.

The technique hore described for finding the asymptotic form of the solution, $n(x)$, in the interior of the right hand rogion may then bo sumarizod as follows: The propagation veotor, k_{0}, of the agyaptotic sirmsa oical or hyperbolic solution is given by the root of the characteristic equation, $\mathrm{E} \bar{X}(x)=1$. The phase of the asymptotic solution is spacified by the extrapolated andopoint distence, x_{0}, which is caloulated by the use of (1.19).

Value at tho Surface
The order of magnitude of the deviation of the true solution from the asymptotic solution in the neighborhood of the boundary can be determined by erraluating $h(0)$, or what is equivalent $n(0) / A$, where A is the abymptotic ampitude. The quantity $n(0)$ cen bo detormined by meking use of the frot that the limit as k goes to infinity of $k(k)$ is $n(0)$:

$$
\begin{align*}
\lim _{k \rightarrow \infty} k G(k) & =\lim _{k \rightarrow \infty} \int_{0}^{\infty} k d x \theta^{-k x} n(x) \\
& =\lim _{k \rightarrow \infty} \int_{0}^{\infty} d y o^{-y} n(y / k)=n(0) \tag{1.20}
\end{align*}
$$

The normelization constant, A, can be gotten by adding the two limiting forms, (1,38). Thas the determination of $h(0)$ can be performed with two manerical integrations.

 minub fro $P(k)$. The gum of tho two R intograls is now finito and can be
 tern and the -2 lowe. The finite torm is just twice tho dorivative of $P(k)$ at ilk, honco can bo evaluatod without an interration。

Tho limiting value of the logarithm of $k G(k)$ for large k can bo sern by the transformation

$$
\begin{aligned}
& k^{\prime \prime}=k k \\
& \ln Q(k)=(=2 / 2 \pi) \int \frac{a k}{k=2} \ln p(k k)
\end{aligned}
$$

to depend only on tho IImiting oharactor of P for large argument. This will, in general, bs considerably simpler then P itsolf. Thus tho sualuam iion of n(0) oin usually be offreted by the eqsiuation of an analytice integral or a simple aune:ical integral, or by somo enelytio device (cin Chaptor III)
ly Bimilar methods further detrils of the charactor of the deviation, $h(x)$. can be obtained. An example of this technique is given in Chaptery IIX. soction 2.

Irmped LalfrInfinite Vedium
In tho preceding sections we hnve treated the problem of the solum kion σ equation (1.1) with the assumption that $E\left(x^{2}\right)$ is zero on one sido of a plane boundary and has a constant value greater than zoro on the other Ejde. The furthor restriction has beon used that the solution. $n(r)$, depends onj.y on the distance from the boundary. We now consider the case in which

$$
\text { r. } 2 \div
$$

$F(x)$ hat different positive values on the two sides of the boundary. We here beop the restriotion that the solution ie a function of x alonc. intograting out y and z as before, the integral equation takes the form

$$
\begin{equation*}
n(x)=c_{1} \int_{-\infty}^{0} d x^{0} n\left(x^{v}\right) \mathbb{R}\left(\left|x-x^{y}\right|\right) * c_{2} \int_{0}^{\infty} d s^{v} n\left(x^{y}\right) K\left(\left|x-x^{y}\right|\right) \tag{1.21}
\end{equation*}
$$

where for definiteness it will be assuned that $c_{2}>0_{1}$.
We again braak up $n(x)$ into a left and right part an in (1.10). (1.21) now beoomes

$$
\begin{equation*}
\tilde{f}(x)+g(x)=\int_{-\infty}^{\infty} d x^{y} K\left(\left|x=x^{v}\right|\right)\left[c_{1} f(x)+c_{2 g}(x)\right] \tag{2.22}
\end{equation*}
$$

Again pariorming a Laplace transformation, wo have

$$
\begin{align*}
& F(k)+G(k)=\bar{K}(k)\left[c_{1} F(k)+o_{2} G(k)\right] \\
& F(k)=G(k) \frac{c_{2} \bar{K}(k) m_{1}}{1-c_{1} \bar{K}(k)}=P(k) G(k) \tag{1.23}
\end{align*}
$$

The equation is now of ozactily tho ande form as lal3. The rest of the treatmunt procesds in exactly the eame way. The solution of the problem is usually sorewhat more complicatod in this case, osing to the greater complexity of P(k).

Eolution with Transverse Wave

- In tho aboro wo have found an sanat solution to the integral oquation (1.l) for a geometry characterized by a single plane boundary. Tnie golution has been obtained subject to the restriction that the "density function $n(x)$, depends only on tho coordinate x. Thus we heve found the family of solutions whose asymptotic bohavior is that of a plane reave with a propagation vector normil to the boundary. To oomplete the general colution it remains only to trout the case in which there may bs a transuerso component of the propagation vecior. To do this it is, of course, only neensbary to consider ono transverse component, bay in the y diroction. Sines the medium is infinite in both directions alonf the y exis, the y cepondence aill be factorabla. Ho therefore assume a dofinite sinusoigal (or hyporbolic) y depencenco oharactorized by a propagation vector, k_{y}, ard then reduce the three-dimensional integral equation to one in one dimonsion as bofore. If thon

$$
n(x)=n(x) e^{i k_{y} y},
$$

squation (1. $\overline{1}$) beoomas

If $F(x)$ has imo positive values as bofore, we have for the Lnplace trans $\therefore \mathrm{BO} \mathrm{m}$,

-25.

$$
\begin{equation*}
\pi(k)+c(k)=\left[c_{2} P(x)+c_{2} g(x)\right] k\left(k^{0}\right) \tag{2.25}
\end{equation*}
$$

Whore k^{*} is the geometric cum of k and $i x_{y}$, i.e. $\sqrt{k^{2}-k_{y}^{2}}$. The rest of the tromment is now the same as in the simplast. case.
fo nee the charactor of the ohenge in the ontrapolated ond-point bitroducad by the transyerse wave, we considar in greater doteil tho undempod casc, $c_{1}=0$. Wo have then.

$$
F(k)=F(k) G(k)
$$

ohere

$$
P(k)=\operatorname{on}\left(k^{x}\right)=1
$$

Than

$$
\pi_{0}=(2 / 2 \pi i) \int \frac{\mathrm{d} k}{k^{2}+k_{0}^{2}} \ln P\left(k^{\prime}\right)
$$

where $k^{42}=k^{2}=k_{y}^{2}, k_{0}^{e 2}=k_{0}^{2}-k_{y}^{2}$ and $P\left(k_{0}^{0}\right)=0$. Sinco $k^{2}+k_{0}^{2}=$ $k^{2} \because k_{a}^{2}$ and $d k=\frac{3 k^{8} d k^{y}}{k}=k^{9} d s^{\%} / \sqrt{k^{02}+\frac{k^{2}}{y}}=d k^{\%} / \sqrt{1+k_{y}^{2} / k^{2}}$

$$
\begin{equation*}
z_{0}=(2 / 2 \pi i) \int \frac{d x^{v} l N F\left(k^{4}\right)}{\left(k^{\prime} 2+k_{0}^{v}\right) / 2+k_{y}^{2} / k^{0} 2} \tag{1.26}
\end{equation*}
$$

Since $\mathrm{lf}_{0}^{\prime \prime}$ has the eam numerical value (for the same c) an $x_{\text {, }}$ in the

integral has beon eveluated (the Milne kernel) the effect of this factor was vory slight. The form of the integral in (1.26) indicates that the offect of the transverse fove will usually be such as to diminish slightiy the eatrapolated endepoint, Tho ondmpoint distanoe will still bo determined pritice:ily by k_{0}^{8}, hence by oo

CHAPTER II. THE SLAB AND SPHERE

in tho first chapter an exact colution to the intogral equation (1.l) Tas obtainod for all cases involving only a singlo plane boundary, It jas sot so far proved possible to find corresponding exnct solutions to problems with two parallel plane boundaries as in a tamped or untampod findte 31.io. It ia olear, howorer, that if the two boundaries are far apart comfared with the extont of the kornel a sufficiently accurato solution oan bo obtained by ansuming thet the two boundery oonditions may bo applied indepont ly. The ofont to which this approximation broaks down with decransing slab thjokngse can bo determined only by comparison of the results so obtained indin the remila given by mothods which for smsll thicknesces are more accuwhten Sucin comparisons have been obtainod and will be discusam in Chepter IV. It sufficse to state here that the roaulis of thio comparisen are such \therefore is indicate that the oxtrapolated ondmpoint method is a useful tcol for nifiosic all of the problene of physicgl intorost.

Tho ugo of this mothod in treating slebs of finito tinickness rests Wi the assumpition that tho thickness is suficient to confein threo refionsi e contial region in which the asymptotic bohavior of the solution is well astablished, and two outwide regions in which the boundery effects are imporiont. If thia is the case, then, for a apocified valuo of c (or of the varicas valuos of c) anc a specifiad number of osciliations of the solution

Whe nositions of the two bouncisies arecixed with respect to the comion asymptotic solution in the middle region, hence also the thicknoss of the slad. If, on tho other hand, the thickness of the slab is spocified, the anustion beoomes an oifcnvalue problem in c. The untanpad slab will have only a disoreto spoctrum of eigenvolues, of the infinitely tasped slab will heye a continuoue as moll as a discrate speoturu.

If the raiphting function, $F(r)$, has not plane but spherical synso metry: the integral equetion for spherically symetric solutiona can be atoured to that of a corresponding plans problem. Taking $F(\underline{r})$ and $n(\underline{x})$ functions on?y of the radiue, r, wo have

$$
\begin{aligned}
& n(x)=\int d \underline{x}^{g} f\left(x^{g}\right) n\left(x^{\prime}\right) \underline{k}\left(\left|x-x^{p}\right|\right) \\
& =2 \pi \int_{-1}^{\infty} d \mu \int_{0}^{\infty} d r^{4} r^{2} F\left(r^{3}\right) n\left(r^{2}\right) x\left(\sqrt{r^{2}+r^{2} \alpha \cdot 2 r r^{2}+2}\right) \\
& y^{2}=r^{2}+r^{82} \infty 2 \pi x^{1} \mu \\
& d \mu==\frac{\mathrm{yciy}}{\mathrm{ma}^{i}}
\end{aligned}
$$

$$
\begin{align*}
& =\int_{0}^{\infty} \dot{n} s^{2} r\left(r^{5}\right) r^{6} n\left(r^{6}\right)\left[K_{2}\left(\left|r a r^{0}\right|\right)-\pi_{2}\left(r+r^{0}\right)\right] \tag{2.1}\\
& \text { where } \quad K_{3}(d)=2 \pi \int_{0}^{\infty} y d y \text { II }(y) \\
& \text { whers }
\end{align*}
$$

In tha reduction of a dawion $\because \because 0$

$$
\begin{aligned}
\int_{-\infty}^{4} d y \int_{-\infty}^{\infty} d z k\left(\sqrt{x^{2}+y^{2}+z^{2}}\right) & =2 \pi \int_{0}^{\infty} \rho d \rho K\left(\sqrt{\pi^{2}+\rho^{2}}\right) \\
& =2 \pi \int_{|x|}^{\infty} y d y x(y)=k_{x}(y)
\end{aligned}
$$

If now we define

$$
n(\sigma r) \equiv n(r): \quad F(\sigma r) \equiv F(r) . \quad u(r) \equiv r n(r)
$$

aquation (2.27) can ba witten as

$$
\begin{equation*}
u(r)=\int_{-\infty}^{\infty} d r^{2} u\left(r^{\prime}\right) F\left(r^{1}\right) Z_{z}\left(\left|r-r^{v}\right|\right) \tag{2,2}
\end{equation*}
$$

winion ja just the onemdimensional form of the integral oquation for a alab having ths sana podistribution as that along a dinnoter of tho sphore. If ic slear from its definition that $u(r)$ must be odd in r. Thus the aolum Bjons of tho spherical problem are in ono-tomone cerreopondence with the odd aolutions in the oorresponding slab problem. For this reason tis independent-ioundary-condition approxination gives much moro accurato results for the Dundomental mode of a sphorical problen than for the fundamontal modo of a slab of the same o value, In the osse that has bean most axtonsively stndied the error in the radius of the untanged sphere ie completely unde. Asoiuplo for all reosoneble values of c. It jis to be expected that the ssime, will be true for all of the various kornels which are of interast in かわje moris.

GASPER IT. EXAMPLES

SI. THE YUKAMA KERNEL

The yukawa kernel.

$$
\mathrm{K}\left(\left|\underline{x}-\underline{x}^{f}\right|\right) \equiv 0^{-\left|\underline{\underline{x}}-\underline{I}^{\prime}\right| / \pi \pi\left|\underline{x}-\underline{r}^{\prime \prime}\right|}
$$

is the Graen"s function of a simple differential operator, $1=\Delta$, and therefor o the integral equation with this kernel has a simple solution.

Equivalence to Thermal Diffusion Equation
The differential equation to which tho the Yusawa kernel is the Green's function describes the diffusion of neutrons after thermalization in a homogeneous hydrogenous material. If neutrons ara thormalised at a rete gey), have a diffusion constant D (so that tho flux of thermal neutrons is - U sped $n(\underline{y})\rangle$, and are absorbed at a rate a $n(\underline{r})$; than the stordymitate distribution of thermal neutrons, $n(\underline{x})$, is dotemincd by the differential ocuntion

$$
\text { i) } \Delta n(\underline{r}) \propto a n(\underline{r})=-\underline{G}(\underline{r})
$$

The solution oi this actuation is

Boanse of this simplicity on the solutions and the wase of sivaluating the integrals involvod, this kernel is usoful in illustrating tho goneral foaturos of the preaent theory. If $n(\underline{y})$ is a solution of tho Entegral equation

$$
\begin{equation*}
A(\underline{r})=\int d x^{\prime} F\left(\underline{x}^{\prime}\right) n\left(\underline{r}^{\prime}\right) 0^{-\left|\underline{x}-\underline{x}^{2}\right|} / 4 \pi \mid \underline{s}+\underline{x}^{2} \tag{3.1}
\end{equation*}
$$

inon it is also a solution of the diffarential equation

$$
\begin{equation*}
\Delta n(x)=[1-F(x)] n(n) \tag{3.2}
\end{equation*}
$$

jt ia not, howover, true that any solution of (3.2) satisfies (3.1). If, for oxamplo, $F(r)$ diffars from zaro only in a desinite rogion thon the integrel equation requires that $n(r)$ fell off exponentially array from this region. Ihus the integral oquetion reguires that its solution satisfy the diseprontial quation and a boundary condition.

If $P(5)$ and. $n(\underline{y})$ depend only on x, equaition (3.1) raduces to

$$
\begin{equation*}
n(x)=\int d x^{8} n\left(x^{8}\right) K_{1}\left(\left|x \circ x^{8}\right|\right) f\left(x^{8}\right) \tag{3.3}
\end{equation*}
$$

$$
\begin{align*}
& \text { !: :.. :.. :... : : ! . : } \\
& \Sigma_{z}(|x|)=2 \pi \int_{0}^{\infty} y \\
& =\frac{1}{2} \int_{|x|}^{\infty} \frac{l d l e^{-l}}{l}=\frac{3}{2} e^{-|x|} \\
& n(x)=\sum_{2}^{1} \int d x^{3} n\left(x^{\prime}\right) F\left(x^{3}\right) e^{\infty}\left|x-x^{9}\right| \tag{3.4}
\end{align*}
$$

The characteristic equation of this kernel is

$$
(c / 2) \int_{-\infty}^{\infty} d x e^{-k x} e^{-|x|} c /\left(1-k^{2}\right)=1
$$

We may now solve by the methods of Chapter I the integral equation (3.3) for the case

$$
\begin{aligned}
F(x) & =0 \text { for } x<0 \\
& =0 \text { for } x \geqslant 0, \quad 0>1+c^{2}
\end{aligned}
$$

Tho Laplace transform of the kernel is $c /\left(1-k^{2}\right)$, hence $\ln P(k)$ is $\ln \left[e /\left(1-k^{2}\right)-1\right]=\ln \left[\left(c^{2}+k^{2}\right) /\left(1-k^{2}\right)\right]$ which has branch points at ± 1 and $\pm i 6$. The appropriate strip of regularity will lie between al and the imaginary axis. Then

$$
\begin{aligned}
\ln \sigma(k) & =-(1 / 2 \pi i) \int_{L} \frac{a k^{v}}{k^{i}-k} \ln \left(\frac{d^{2}+1^{2}}{1-k^{2}}\right) \\
& =\ln \frac{o^{2}+k^{2}}{1-k^{2}}+\frac{1}{2 \pi i} \int_{R} \frac{d k^{2}}{k^{0}-k} \ln \left(\frac{0^{2}+k^{12}}{1-k^{12}}\right)
\end{aligned}
$$

The contour of tho R integrof mef Enow real axis, oncircling the branch point at +1 . The reol part of the logam ritim thea makes no contribution to the intagral. The difererence in phace of the argument of the logarithm on the upper and lowor path is thri. the integral is then $\int_{1}^{\infty} d k^{*} /\left(k^{\prime}=k\right)$. This is - $\ln (\underline{l}-k)$ plus in infinite conotant which re discard. (This removal of the infinite constant cen bs done more rigorously. Cf. Chaptor I.)

$$
\begin{align*}
\ln G(k) & =\infty \ln \left(c^{2}+k^{2}\right)+\ln \left(1-k^{2}\right)-\ln (1-k) \\
G(k) & =(1-k) /\left(c^{2}+k^{2}\right) \tag{3.5}\\
g(x) & =\left(1 / 2 \pi^{2}\right) \int_{-i \infty 0+\delta}^{i \infty 0+\delta} \operatorname{dk} s^{k x}(1+k) /\left(c^{2}+k^{2}\right)
\end{align*}
$$

For negatire $x, \theta^{k x}$ vanishes at $\div \infty$, thus the contour can bs extended to the rizht and as no singularities are enclosed the fintegral vanishos. For positive x tho contour can be extended to the left and the value of the intogral is given by the two residuos at tic.

$$
\begin{align*}
g(x) & =(1 / 2 i C)\left[e^{i C x}(1+i C)=e^{-i C \pi}(1-i C)\right] \\
& =(1 / C) \sin C x+\cos C x=\sqrt{1+0^{2} / 0 \sin c\left(x+0^{-1} \tan ^{-1} c\right)} \tag{306}
\end{align*}
$$

This colution exhibits two intorosting properties. $g(0)=g^{\prime \prime}(0)=1$, thus the boundery cordition on tho differential equation is very simplo, just the

requirement that the logarithnic derivative of $g(x)$ be 1 at the surface. fiso the sinusojdal behavior holds right up to the aurface, ioe $h(x)$ is sworywhere zero. Both of these propertios can bo sean riractly from the integral equation. As pointed out above the solution to the integral equation mast satisfy the differential equation (3.2) throughout. Thas the ainusoidel behavior must continue to the surfece. Sinco the integral equa. tion (3.4) requires that $n(x)$ decay for nepative x just as $e^{-|x|}$, the logerithmic derivative mast be one at the surface. For this integral Qquation the "midale region" in which the asymptotic behavior of the solution iss well eatablished extonds rigorously to the surface. Thas tho independent application of the boundary condition to tro eurfaces in perfoctly accurate. This example serves to give us confidenoe that in other equations with kernels differing sjightly from this one the indepondent spplication of the boundery condition may give fairly accurate results. As shown by the aoluifion (3.6) the extrapolatod ond-point is on $\tan ^{-1} C$. Ihis can be verified isy the use of the formula (1.19).

$$
x_{0}=(1 / 2 \pi x) \int_{R} \frac{d k^{i}}{k^{2}+c^{2}} \ln \frac{c^{2}+k^{92}}{1-k^{12}}
$$

Again tho contopur may be dorormed so as to lie along the raal axis and anolose the point 41 giving

It, will be shown in Soction a oi this chapter that this kernel and the essociated diffusion oquation are of uas in the treatment of the water-boiler problom.
¢́ 2. THE MILNE ZETRNEL

Deripation of Integral Equation
In the problems of primery interest in thie worik the hornol is

$$
x\left(\left|\leq-r^{\prime}\right|\right)=e^{-\left|x=E^{\prime}\right| / 4 \pi\left(5-x^{8}\right)^{2}}
$$

This is the kernel in the integral equation of E. A. Ailne dascribing the flow of radiation in the outer laygrs of a star. Wo use this kemel in the intogral equations dosoribing tho multiplication snd diffusion of noutrons in fissionable and soattoring material. Wo treat primerily problems in which the total mean fres path of noutrons is the same in all of the materiala inrolvod. We hore treat the noutrone as monochromatio and the fission and soattering processes as isotropic. We donote by σ tho total collision probability per unit path longth. σ is tho sum of tho soatcerinp, fission and aboorption probabilitios, σ_{g}, σ_{f} and σ_{Q}. Wo donote by $P(x)=1+f(x)$ the quantity (wf $+a_{g}$)/o where v is tho mean number of noutrons emerging

 of "z "porfoot tamper" at one in which \hat{l} is zero, The donsity of neutrons ut, tho point \underline{r} at time t we denote by $n(\underline{r}, t)$ o These neutrons suffer collisions at este of per unit time. Ho may consider that $1+f$ neutrons omorge from each of these collisions and proceed uniformly in all direotions. The density of neutrons at x and t is determined by tho number of neutrons emerging from collisions at ail pointer, $\mathrm{r}^{\prime \prime}$, ot earlier
 Thu probability of their arrival is given by $e^{-\sigma\left|x-x^{\prime}\right|}$ maltiplied by the inverse square factor, $1 / \Delta \pi j \underline{y} \sum^{1} \|^{2}$ 。 Thus the rate gt which neutrons arrive in a unit volume at $E_{v} \quad v(r, t)$, is

This equation will have solutions in which the time dependence is exponential,

$$
n(\underline{r}, t)=n(\underline{r}) e^{x t}
$$

hence

$$
n\left(\underline{r}^{k}, t=\left|\underline{r}=\underline{r}^{\prime}\right| / v\right)=n\left(\underline{E}^{\prime}, t\right) a^{\circ \gamma\left|\underline{r}-\underline{r}^{i}\right| / v}
$$

then $n(r, t)$ hence also $n(r)$. satisfies the integral equation

It is convenient now to masure distances in terms of the mann attenuation distence, $1 /(\alpha+\gamma / v)$. With this unit of lenfth tha equation takes the form

$$
\begin{equation*}
\left.n(\underline{r})=[1 /(1+\gamma / \sigma v)] \int d \underline{r}^{\prime} \underline{F}\left(\underline{r}^{i}\right) n\left(\underline{\underline{r}}^{9}\right) X\left(\mid \underline{r} \circ \underline{r}^{i}\right)\right) \tag{3,9}
\end{equation*}
$$

where R now represents the kilno kernol.
The onexdinensional form of this kernel is

$$
\begin{align*}
K_{1}\left(\left|x-x^{0}\right|\right) & =(1 / 4 \pi) 2 \pi \int_{0}^{\infty}-\operatorname{dg} \rho e^{-\sqrt{x^{2}+j^{2}} /\left(x^{2}+j^{2}\right)} \\
& =(1 / 2) \int_{|x|}^{\infty} \frac{d z}{z} \theta^{\infty} \tag{3.10}
\end{align*}
$$

Since we have frequent occasion to use this function wo use this simplifiod notation for the axponential integral instead of the customary $-\mathbb{E}(-|x|)$. For the oharacteristic equation we have

$$
\begin{align*}
& 0 \int_{-\infty}^{\infty} d x e^{\infty} \frac{1}{2} E(|x|)=c \int_{0}^{\infty} d x E(x) \cosh k x \\
& \quad=(c / k) \int_{0}^{\infty} d x \frac{e^{-x}}{x} \sinh k x=\frac{1}{2}(c / k) \operatorname{lr} \frac{1+k}{10 k}=1 \\
& \varepsilon=k / \tanh ^{1} k \tag{3.11}
\end{align*}
$$

The charactoristic oquation has two real roots if $c<1$, two imaginary roots if $c>1$. o is hore $(1+f) /(1+\gamma / \sigma v)$ 。o will be greater than 3 in the core and will bo (in a perfect tamper, i.e. $f=0$) less than Ox greater than I in the tampor as the gadget is hypar- or myponcritical. For C greater than I the roots will lie at $\pm i k_{o y}$ wer

$$
\begin{equation*}
c=k_{0} / \tan ^{-1} k_{0} \tag{3.12}
\end{equation*}
$$

Graphs of the functions cocurring in (3.12) and (3.12) and their reciprocala are given in Fig. V.

Evaluation of the Extrapolated Ind-Point
Applying to this kernol the extrapolated ondmpoint formula (1.19) for an untamped surface, wo have

$$
x_{0}=(1 / 2 \pi i) \int_{R} \frac{d k^{\gamma}}{k^{1} 2+k_{0}^{2}} \ln \left(\frac{c}{2 k^{8}} \ln \frac{1+k^{\prime}}{1-k^{y}}-1\right)
$$

diofoming the cont as before and performing few simple erensformations gives

$$
\begin{aligned}
& \left.x_{0}=\frac{1}{2 \pi i} \int_{1}^{\infty} \frac{d k^{e}}{k^{e 2}+k_{0}^{2}} \ln \left[\frac{10 \frac{c}{2 k^{1}}\left(\ln \frac{j+k^{1}}{k^{1}-1}+\pi i\right)}{1-\frac{0}{2 k^{8}}\left(\ln \frac{1+k^{1}}{k^{1}-1}-\pi i\right.}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{\pi} \int_{1}^{\infty} \frac{d k^{0}}{k^{8}+2 r_{0}^{2}} \tan ^{-1}\left[\pi /\left(\ln \frac{k^{0}+1}{k^{0}-1}: \frac{2 k^{0}}{0}\right)\right] \\
& =\frac{1}{\pi} \int_{0}^{1} \frac{d s}{1+k_{0}^{2} s^{2}} \tan ^{-1}\left[(\pi / 2) /\left(\tanh ^{-1} \quad \theta \quad-1 / s a\right)\right] \tag{3.13}
\end{align*}
$$

Whore as before

$$
e=\{1+f\rangle /\left(1+\gamma^{\prime} J V\right)=k_{c} / \tan ^{-1} k_{0}
$$

The integral for x_{0} hes boen ovaluated for a number of values of c. It is found that to a very good approximation cn_{o} is constanc. Since the accuracy with which x_{0} was evaluated is considerably greater than the accuracy of most graphs, it is ox rathar then x_{0} itself which is presonted in Piga VI. The value of tro for $c=1$ is ois special interest for two reasons. Since oxo is aensibly oonstant over a long range (rising by leas tithan one percent at $0=2$) a userul approximation to x_{0} is $x_{0}(1) / \mathrm{c}$. The untamped integral equation for this kernel with $0=1$, the "equation of Lin A. Milne", has been the subject of considerable study in the past. Eu Hopi gives for the value of $x_{0}(1)$; 0710 . This is in agreoment with our determin ration which gives the value .Tlot. (This number has bosn more accurstely evaluated by G. Blanch at the request of Placzek and Saidol. The value computad was .710@4509).

Extrapolated EndoPoint at Tampad Boundary

For a tamped boundary the extrapolated and-point is

$$
x_{0}=(1 / 2 \pi i) \int_{R} \frac{a k^{\prime}}{k^{\circ 2}+k_{0}^{2}} \ln \left[\frac{2 \infty \frac{c}{2 k^{2}} \ln \frac{1+k^{\prime}}{1-k^{\prime}}}{10 \frac{c^{\prime}}{2 k^{\prime}} \ln \frac{1+k^{9}}{1-k^{\prime}}}\right]
$$

where $c=(1+f) /(1+\gamma / \sigma 0)=k_{\alpha} / \tan ^{-1} k_{0}$

$$
\boldsymbol{o}^{\prime}=\left(1+f_{t}\right) /(1+\gamma / \sigma v), \quad f_{t}=P \text { oî tampor. }
$$

Evaluating this integral in the same way as above gives for the extrapolated endopoint, if the intorior solution behaves as $\sin k_{0}\left(x+x_{0}\right)$ and the anterior solution as $e^{k_{1} x}$,

$$
\begin{align*}
& =\tan ^{-1}\left(x_{0} / k_{1}\right) / k_{0}-\Delta x_{0} \tag{3.14}
\end{align*}
$$

The extrapolated ond-point is thus expressed as the differance betweon two tarms, one of whioh is simple, the other small. Tho first torm is just the Feime of: the oxtrapolated end-point which would be obtainod by assuming the asymptotic solutions, iu $\operatorname{lng}^{\circ}$ continuity of the lemarifthmiogerifetive, i.e. just the diffusion theorotic

 interoating range of values of k. eocentially conctant. As may bo eeen in fieg. VII and VIM a reasonably good opproximation is afforded by taking ct: $A x_{0}$ ta bo about o045. This quantity is the deorease of the extrapolated endopoint as comparod with ito diffusion•theoretic valuo measured in units of the mean free path divided by $1+$ fto This constancy is good, in tho sinal resulte of most problems, to about ono percent. It is most seriously in error for a very large core (honce small lo) and a naarly perfoct tamper.

Acouraoy of the Endopoint Mothod

Since the Milne kornol differs only slightly from the Yukawa kernol it is to ba expected that the application of tho end-point mothod to alabs and sphores should give iairly qccurato remults. The endopoint results for fhe untampod alab have been compared with tho results of a parabolio vaxiation calculaition parformad by H. Betho and with an asymptotic fomula correct in the limit of smoll thickness. She result of this comprison is presented in Fig. IX. The end-point method is seon to be good to within one parcant in the intoresting range. A parabolic variation calculation for the untamped sphore was carried out, by Pryce and by i. Feynnan. The offeot of the inclusion of a quartic tern was investigated by pryce showing tho quadratic result good to one part in 50,000 . No difference batoreen these results and those of the andopoint method was detectable except for the limiting value of af ($a=$ radius) for small a for which the endopoint mathod gives a result incorrect by about one percont. Ve therefore believe that for untomped and infinitely tamped spheres the endapoint mothod can be used with

 oont is not considered serious. It will be seen in subsequent soctions that the endmpoint method gives very aocurate results in problems far bsyond the range of problems for which it wes designod or ror which any obvious theargtical reason for its accuracy exiats.

Erid-Point Mathod for Finitely Tampsd Npheres

In particular the extonsion of the and-point mothod to spheres of finito tsmper proves to bo quite accurate, as verified by a numerical itera.tion solution. The technique of applying the end poini method to finitely tamped spheres je as follows: The integral equation gives a relationship connecting the radius of the core, the tamper thicknoss, the multiplioation rate, and the values of f in core and tamper. Any four of those five quantities may be specified, the equation then determines the value of the fifth. The most convenient of these to leave unspecified is the radius of the core. As show in Chaptor I the sphorical problem is equivalont to the determination of tho odd solution in a corresponding slab problem in which a slab of core material of thickness equal to the diameter of the spherical core 1 ios between two slabs of tamper material of thickness equal to the thickness of tho spherical shell tamper. If the tanper thicinnes, multiplication rate, and oore and tamper matorials axe speaified then the forms of the "asymptotic" solutions in tho core and tamper are fised as follows: The "solution" in the core is sin $k_{0} x$, where x is measured from the conter of the slab of core material and k_{0} is determinod from the specified fcore and multiplication rate by equation (3.12). The "solution" in the tamper is

$\sinh k_{1}\left(T+a+\Delta x x_{1}-x\right)$ migre perties by (3.11), I is the tamper thickness, a the core radius, ΔX_{1} the extrapolated and-point at the outar edge or the tampor as given by fif. VI. At the coreotamper interface, $x=a$, the phase of the hyporbolic sine is then fired. Ita logarithmic derivative is $\sin _{2} \operatorname{coth} k_{1}\left(T+\Delta x_{1}\right)$. If a diffusionethooretic oore radius, $a_{0,}$ is then determined by equating this Iogarithmic darivative to k_{0} ctn $k_{o} a_{0}$ the endapoint radius is $a=a_{0}+\Delta x_{0}$ Fhere Δx_{e} is givan by Figz. VII and VIII. Since the numerical solutions (iterative) minich supply the cheak on the accuracy of this approximation were carried out very early in the present study graat accuracy was not required of thom. They were good to about one percent in the digenvalue. The chocis is tharefore less precise than the expected accurecy of this appromimationo Eron this oheok, howevss, is 日uficiciently procise for all practical purposes.

Valise of tine Solution at the Surface
In the apecial case of the nonmultiplying untamped equation, $(f=0$, with neutrons introducod at infinity) the oquation of E. A. ifilno, a. stiudy has bean made of the oharacter of $h(x)$, the difference betweon the actual and asymptotic solutions. In this case the asymptotic solution is linear in x o The end value, $n(0) y$ wes determinod by the method outlined in Ghapter I. If the normalization is such that the asymptotic solution hse unit slope, so that $n(x) \rightarrow x+.710$ for lerge x, then $n(0)$ has the value .5773. This strongly suggests that $n(0)$ is $1 / \sqrt{3}$. 'Shis is actually tho case, as shown by Eo Hope by the following methodi). The integral oquation
2) Monthly Notices of the Roy. Astron. Soo. 90, 287 (1930)

fere is

$$
\begin{equation*}
n(x)=\frac{1}{2} \int_{0}^{\infty} d x^{1} n\left(x^{p}\right) E\left(\left|x-x^{i}\right|\right)=\ln (x) \tag{3,15}
\end{equation*}
$$

Where E is defined in (3.20) and L represents the integral operator. If $n(x)=x+\phi(x)$ this equation may bo written,

$$
\begin{aligned}
\phi(x) & =\underline{L} \phi(x)=\frac{1}{2} \int_{-\infty}^{0} d x^{y} x^{2} E\left(\left|x-x^{g}\right|\right) \\
& =2 \phi(x)+\frac{1}{2} E_{3}(x) \\
E_{n}(x) & =\int_{1}^{\infty} d y e^{-x y / y^{n}}
\end{aligned}
$$

where
hence formality

$$
\begin{align*}
\phi(x) & =\left(\frac{1}{1 \circ L}\right) \frac{1}{2} E_{3}(x) \tag{3.16}\\
& \equiv\left(1+L+L^{2}+L^{3}+\ldots \ldots\right) \frac{1}{2} E_{3}(x)
\end{align*}
$$

Differentiating (3.15) gives

$$
\begin{align*}
& n^{\prime \prime}(x)=1+\phi^{\prime}(x)=\frac{1}{2} \int_{0}^{\infty} d x^{8} n\left(x^{8}\right)\left(d / d x^{1}\right) E\left(\left|x=x^{2}\right|\right) \\
& =\frac{1}{2} n(0) E(x)+\frac{1}{2} \int_{0}^{\infty} d x^{0} n^{\prime \prime}\left(x^{y}\right) E\left(\left|x-x^{v}\right|\right) \\
& \phi^{\prime}(x)=\phi(0) \frac{1}{2} E(x)+L \phi^{v}(x)=\frac{1}{2} \int_{-\infty}^{0} \alpha^{v} E\left(\left|x-x^{v}\right|\right) \\
& =L \phi^{\prime}(x)+\frac{1}{2} E(x) \phi(0)=\frac{1}{2} E_{2}(x) \tag{3.27}\\
& \phi^{p}(x)=\left(\frac{1}{1-1}\right)\left(\frac{1}{2} \mathrm{~F}(x) \phi(0)-\frac{1}{2} \mathrm{E}_{2}(x)\right)
\end{align*}
$$

The flux oquation from which

$$
\int_{x}^{\infty} d x^{\prime} n\left(x^{\prime}\right) E_{2}\left(\left|x-z^{\prime}\right|\right)=\int_{0}^{x} d x^{2} n\left(x^{p}\right) E_{2}\left(\left|x=x^{y}\right|\right)=\text { const. (3.18) }
$$

The derivative of this equation is (3.15). Evaluating the oonstant for lerge x, where $n\left(x^{\prime}\right)$ is woll raprosented by $x^{\prime}+$ constants gives for the value of the constant in equation (3.18)

$$
2 \int_{0}^{\infty} x d x \operatorname{Eg}(x)=2 / 3
$$

Then (3.18) for $x=0$ becomes

$$
\int_{0}^{\infty} d x[x+\phi(x)] E_{2}(x)=1 / 3+\int_{0}^{\infty} d x \phi(x) E_{2}(x)=2 / 3
$$

Vio enst oan ovaluate by two different methode the integral

$$
\begin{aligned}
\int_{0}^{\infty} d x \phi^{\prime}(x) E_{3}(x) & =-\phi(0) E_{3}(0)+\int_{0}^{\infty} d x \phi(x) E_{2}(x) \\
& =-\frac{2}{2} \phi(0)+1 / 3 \\
\int_{0}^{\infty} d x \phi^{\prime}(x) E_{3}(x) & =\int_{0}^{\infty} d x E_{3}(x)\left(\frac{1}{1 \times \Sigma}\right)\left(\frac{1}{2} E(x) \phi(0)-\frac{1}{2} E_{2}(x)\right) \\
& =\frac{1}{2} \int_{0}^{\infty} d x\left(E(x) \phi(0)=E_{2}(x)\right)\left(\frac{1}{2-L}\right) E_{3}(x)
\end{aligned}
$$

sinoe the operator L or any powor of L is symmatric.

$$
\begin{aligned}
\int_{0}^{\infty} \dot{d x} \phi^{\prime}(x) E_{3}(x) & \because \rho_{0} \\
& =2 \neq(0)\left[\phi(0)=\frac{1}{2} E_{3}(0)\right]=2 / 3 \\
& =2 \phi^{2}(0)-\frac{1}{2} \phi(0)-1 / 3 \\
2 \phi^{2}(0) & =2 / 3 \\
\phi(0) & =2 / \sqrt{3}
\end{aligned}
$$

This number, $1 / \sqrt{3}$, plays an important role in this theory. It was used for some time for $\phi(0)$ and for the extrapolated ondopoint as a result of the following argument, owing to Fermi: If $n(x)$ is well reprosorted by a solution of the form

$$
n(x)=a+x
$$

then the flux at the surface is

$$
\frac{1}{2} \int_{0}^{\infty} d x(a+x) E_{2}(x)=\frac{1}{4} a+1 / 6
$$

35 this is equated to the asymptotic flux, $1 / 3$, it gives $a=2 / 3$. Using the ane expression for $n(x)$ in the integral equation (3.15) to compute a second approximant to $n(0)$, one has

$$
n(0)_{2}=\frac{1}{2} \int_{0}^{\infty} d x E(x)(a+x)=\frac{1}{2} a+\frac{1}{4}
$$

If this is equated to a, the value of $n(0)$ in the first approximation,

then $a=1 / 2$. Since in each of these two caloulations some feature of the i'irst spproximant is identified with the corresponding fouture of the second approximant it is not surprising that the two results are somewhat different. It seems plausible to oquate the ratio of the two quantities, flux/n(0). in aisti and acoond approxination. This gives

$$
\begin{aligned}
\frac{(1 / 4) a+1 / 6}{(1 / 2) a+1 / 4} & =\frac{1 / 3}{a} \\
a & =1 / \sqrt{3}
\end{aligned}
$$

Angular Distribution of kiux at tho Boundary

This arugent thus gives correctly the ond value of $n(x)$ but not its asymptotic linarr form. This is presumably because the argument depends primarily on the local linear approximation to the solution rather than on the character of $n(x)$ for large x. If this is truo then it is to be expacted that an approximate solution of the form $x+1 / \sqrt{3}$ would givo fairly securately the angular distribution of energing noutrons (radiation). The distribution in angle-cosine, μ, of the flus at the boundary is

$$
f(\mu)=\int_{0}^{\infty} d x n(x) e^{-x / \mu}
$$

$-$

$$
\begin{equation*}
\left.\rho(\mu)=\int_{0}^{\infty} \mathrm{d} x(x+2 / j 3) e^{-x / j}=\infty \quad \mu+\sqrt{3} \mu^{2}\right) \tag{5.19}
\end{equation*}
$$

This result, also owing to Fermi, was checked by calculating a few values of $G(k)=f(1 / \mu)$. The comparison is shown in Fig. X (cr. also G. Placzok, Gio6). As may be soen from this greph the angular distribution of emergent noutrons or radiation is exceedingly woll fitted by the Fermi approximation. The ratio of normal to total flux which is used for calibration is fitted to a fow tenthr of one percent.

Slareotor of Solution Noar the Boundary
The values of $G(k)$ celculated for the purpose of this comparison wore uasd to obtein an estimate of the discrepancy term, $h(x)$. This diserepancy seems to ba fairly well fittod for most of its range by an exponential, " $109 e^{-20 .} 5 \mathrm{x}$. The approximate accuracy of this fit is indicated by comparing f;he integral of this approximation to $h(x)$

$$
\int_{0}^{\infty} d x .109 e^{-.2 .45 x}=.0445
$$

With the true value of the integral which can be goten directly from che expansion of $G(k)$ about $k=0$. The correct relue of the integral is . 04766 which differs from the above value for the integral by 7 parcent. This approxinate fit to $n(x)$ is given in Fig. XI.

The rapid indicatoa that the "middle rogion": in which the asymptotio bohavior of the
solution is well established will actually exist in nost problems of interest. tho decay of the discrapancy tem is undoubtedly still more ropia for a sinusoidal colvijon as evidenced by the groat accurecy of the andopoint solution for spheres of vary smsll radius.

53. THE GAUSS RERREI

Desirstion of Gaubs Kerncl by Compounding Reny Elomontaxy Distributions

The kernal of an integral equation for the diffusion of nsuirons reprasents the diatribution function of the displaccment suffered by a noutron betiveen successive ovents. Theso ovents need not be collisiong of any type but may be more videly spaced ovents. If the displacoment oocurring kotwean the two significant avants is the vactor sum of any displacomenta small compared with the ovarall displacement, the distribution function will bo approximately Gaussian. This may bo seon from the Iact that the Fourier cransiorm of tho distribution function of the resultant of many displacementa i.s the product of the Fourier transforms of the distribution runcibions of ine individual displasements (these distributions boing assumed indepondent). Those individual distribution functions cover a sinall range in x and thorefore fall off slowly with k in Fourier transform. The product of many of thoso will fall off rapidly with k so that the individual transforms

maty auch binomials is approxifutely"e in in the rance of k for union asin is amsll for every 5. Tho exponent of the Gause function is large ompared with any one of these; Bo the Gauss function is essentially doed bayond this range. This Gauss function ia tine Fourier tranafora of the oversl] distribution function, which is therefore also Gaussian. In this derivaSion it is essumed that tho succossive displaosnonts are independent, Fhich ona bo truo only if tho distribution of displacoments is indopondent of prsition. This treatmont will therefore be applicable to neutron difiusion problems only if the core and tamper materials are identical as rogerda tho Gementaxy displacempnts and if the oorrolation in direotion and lonfths batifeon successive patins may bs neglectad. For the water-boilor problem witn a matox tamper, tho first of these conditions will be approximataly satisfied. The amond condition and the reguirement that no one of the olementary dispiecements be comparable with the ovorall displacsmont is not :ell satisfied. The offact of this change is discusaad in the noxt section. The value of the study of the Gauss kernoi lies in the fect that it is a reasonably good approrimation in many problems and has no froc paraneters excopt for the scale of size。

Extrapolatod End@Point Troatment
In the oxtrapolated endmpoint weatment of tho Gausa kernel a fanture is net which doos not occur in the preceding examplea. The Laplece transform has tho form $\theta^{\text {ck }}$ which is eguated to a constant in the chargctorietic equation. Thus ck2 is the logarittm of this constant, wieh hes a donimseable infinity of values. The oraracteristic aguation has an

 distribution of roots still permits a vertical strip of regularity; so no diffioulty arises in the ond-point determination.

The normalized threo-dimensional Gauss function is

$$
\frac{r_{0}^{3}}{(3 \pi / 2)^{3 / 2}} e^{-3 x^{2} / 2 x_{0}^{2}}
$$

where $r_{0}{ }^{2}$ is the mean equare displacement of this distribution. If tho aistribution funation of the resultant of many elementary displecements is to be represented by a Geuss function, $r_{0}{ }^{2}$ must be the aum of the olomentary moan square displacoments.

In the calculations which were carried out with the Gauss function the unit of length was taken to be $\left(2 r_{0}{ }^{2} / 3\right)^{1 / 2}$ 。 In those units the distribution is

$$
1 /(\pi)^{3 / 2} e^{-r^{2}}
$$

Its onondimensional form, in which y and z are intograted out, is

$$
1 /(\pi)^{1 / 2} \quad 0^{-x^{2}}
$$

which has for its Laplace trensform

-53

The characteristic equation is

$$
\begin{equation*}
\Leftrightarrow e^{k^{2} / 4}-I \equiv P(k)=0 \tag{3.20}
\end{equation*}
$$

The roots of this equation occur at

$$
k=2(-\ln 0+2 n \pi i)^{1 / 2} \quad n=0, \pm 1, \pm 2, \ldots \ldots \ldots
$$

If: $\quad k=m+i t$, then

$$
-2 \ln c=s^{2}-t^{2}
$$

so the roots lie on a rectangular hyperbola in the k-plane with axes along the real and imaginary axes. If c is greater than 1 there will be two solutions on the imginary axis, 士iko, hence there will exist a sinusoidal asymptotic solution. If a is less than 1 there will be real roots, $\pm \mathrm{k}_{1}$, which dotermine tho asymptotic solution.

The case of primary interest, for example in an approximate treatment of the water-boiler, is that for which $c>1$. Here the strip of regularity used in defining $F(k)$ and $G(k)$ is that lying to the right of the roots on the imaginary axis and to the left of the naxt roots in the right half plane. Where $0=0$ for $x<0$, the extrapolated end-point is

$\ln P(l x)$ may bo written as $\ln \left(e^{\left(k^{2}+x 0^{2}\right) / 4}\right.$ ol). Since the oontour runs to the right of the roots at $\pm i k_{0}$, we may add to $\ln P(k)$ s.ny term whioh in analytic in the right half plane without ohangine the value of the integral. It is conveniont to replace $\ln P(k)$ by $\ln \left[P(k) /(1 / 4)\left(k^{2}+k_{0}^{2}\right)\right]$. Ohis makes no change in the value of the integral which now may be evaluated conveniently by muericel intogration up the imaginory axis. x_{0} has boon araluated roughly for a number of rulues of c. The results are presented j.ns Fite xix. Seversil numerioal solutions for apharionl problems have beon cibtained (of. Chapter IV), and givo radii in agreement with those of the ondo goint ocilculation within half a parcont.

Value of the Solution at the Surface
The end value, $n(0)$, has been computed for the linear solution, $c=1, n(0)=x \& .410+h(x)$. It has the value $1 / 2$. Thus the chareoter of the deviationg $h(x)$, differs marisodly from that for the Milne kernel. In particular the two are of opposite sign. This change in sipn of $h(x)$ is not surprising sinco the general appoarance of the Yukawa kernel (for whioh $h(x)=0$) is intermediate between that of the Milno and Gauss kernels.

S4. THE GMRISTE KERNEL

Dorivation of the Yukara Kernel as the Distribution Function of Overall
Displacemonta Compounded from Elementary Displacementis Exponentially Distributod in fumber

A reasonably accurate troatment of tho water~boiler probler mast take into account the fact that the elementary dieplacemonta are not negligible in comparison with the overall displacoment. In particular, tho measi squere displacoment in the first mean froe path is of the order of half of the total moan square displacomont in cooling neutrons to thormal energy. Since most of the collisions are with hydrogen the correlation in diroction and magnitude of succossive elementary displacements wil.1 be signifioant. The diffusion of neutrons after thermaliaation will not be Gauasian sinoo tho number of elementary displacomonts as well as their megnitudes is statistionlly distributed. Tho distribution of displacements in the diffusion after thermalization has been shown to be that of the Yukawa kernel (cf. Soction 2)。 A demonstration of this faot by atatiatical arguments is es folloms:
for a dofinite number of elementary displacements tho distribution function of the overall displacement is (4Ja) $-3 / 2 e^{-r 2 / 4 a}$ with tho Laplace transform, $e^{\text {ol和 }}$. Here a is proportional to the numbsr of elementary dism placements beffore capture. this number of elementary displacements will be exponentially distributed since tho probability of oapture is the same at each step. Averaging the Laplace transform of the Gauss distribution with

$$
\int_{0}^{\infty} d a \theta^{-a} \theta^{a k^{2}}=1 /\left(10 k^{2}\right)
$$

which is the Laplace transform of the iakawa kernol.
In the oimplest type of the water-boiler problen we have an spherical core of a water solution of fissionable matoriai surrounded by a pure water tainper. The fissionable material in the oore absorbs thormal neutrons and emite fast neutrons. Tho fissionable material of the oore is present in sufficiently low concentration that the absorption of neutrons bsforo thermalization is negligible. The fast neutrons produced by fission are scettered in the water of the core and tamper and slowed to therral onexg. Cance thermajizad the nelitrons diffuse in the water until ceprured, either by hydregen or the fissicnable material. Since the diffusion distance is different in tho core and tampar, owing to the absorption by the fissiomeble material, it would appar that the distribution of displncements botween thermaliaation and capture could not be described by a displacement kernal. The problem can, hovever, bo formulated as a displacoment intagral aquation by tho following dovice, ming to R. Christy and R. Foynman:

Deaitation of the Christy Kornol for the Water-Boilex.
Denote by $m(x)$ the rate at which neutrons are thermalized per unit volume at x anc. by $n(x)$ the density of thermel noutrons, Take for the unit of time the mean lifetime of thermal neutrons in the cors material.

Then the rate of production of faat neutrons in the core is $n(x)$ w, Whare 0 is the fraction of 211 thermal nautrons absorbod in the core material which are absorbed in the fissionable material. hence produce fission, and y is tho number of fast neutrons produced per fission. Lat $K\left(\left|E=E^{\varepsilon}\right|\right)$ be the distribution function of the displecement oacurringe botween the production oi a faet noutron and its thermeliadion Then the reto of production of thermal neutrons will bo

$$
\pi(\underline{r})=v \underline{\underline{r}} \int d \underline{r}^{8} n\left(\underline{r}^{\theta}\right) K\left(\left|\underline{r}=\underline{r}^{\prime}\right|\right)
$$

whore tho integration is oarried orer the cose. Denoting by $g(\underline{y})$ as bexore thet part of the thermal-noutron distribution, $n(r)$, which lios in the core, we may write this oquation as

$$
\begin{equation*}
m(\underline{r})=v o \int d \underline{r}^{\prime} g\left(\underline{\underline{r}}^{\eta}\right) R\left(\left|\underline{r} \infty \underline{r}^{\eta}\right|\right) \tag{3.21}
\end{equation*}
$$

Where tho integration nay now bo carrisd over all space. The diffusion distanco is smaller in the core than in the water tamper booause of the additional absorption of the fissionable material. The moon square diffusion diatance is diminished in proportion to the absorption rato, i.e. by a factoz $1 \Rightarrow 0$ where c is as before the ratio of the absorption rete for the fisisionable material to the total absorption rato. thus 1 - c is the frcotion absorbsd by hydrogen. The distribution function of tho displacement by thormal diffusion in the vetor tamper bafore capture, normalized to

unity, is

$$
\frac{6}{4 \pi r_{0}^{2}} \frac{e^{-\sqrt{6}\left|r-r^{2}\right| r_{0}}}{\left|r=r^{2}\right|}=Y\left(\left|r \infty r^{\prime}\right|\right)
$$

where $r_{0}{ }^{2}$ is the threendimensional mean square displacement. If for the moment we neglect the additional absorption by tho fissionable material in the core then

$$
n(\underline{x})=0 \int a_{\underline{x}^{2}} m\left(\underline{\underline{x}}^{\prime}\right) Y\left(\left|\underline{\underline{r}}-\underline{\underline{r}}^{\prime}\right|\right) V^{\prime}(\underline{2}=0)
$$

where the Yukawn kernel is defined for a value of r_{0} appropriate for pure water. The factor $1 /(1-c)$ arises from the fact that the man lifetime in the core material was taken as the unit of time. Therefore the mean lifetime in water is $1 /(1 \sim 0)$, hence also the ratio of $n(\underline{n})$ to $m(\underline{x})$ if both are constant. The additional absorption by the fissionable material in the core results in the disappearance of neutrons at a rate on (r) in the coors, hence at a rate $c \mathrm{~g}(\underline{\mathrm{r}})$. This disappearance of neutrons may be treated as a negative source of neutrons corresponding to the positive source $m(\underline{x})$, hence results in a diminution of the neutron density, $n(\underline{x})$, by an amount $=\delta n(\underline{r})$ where

$$
-\delta n(\underline{r})=I /(2 \circ c) \int d \underline{\underline{r}}^{y} Y\left(\left|\underline{r}=\underline{\underline{r}}^{i}\right|\right) \in g\left(\underline{r}^{\prime}\right)
$$

Thus the true neutron density is

If we now substitute in this equation the expression for $m(\underline{x})$ given by equation (3.21) wo get a displacement intogral equation for $n(\underline{r})$

$$
\begin{equation*}
n(\underline{r})=1 /(I=c) \int d \underline{x}^{y} Y\left(\left|\underline{x}=\underline{r}^{y}\right|\right)\left[r_{0} \int d \underline{r}^{\prime \prime} K\left(\left|\underline{r}^{\prime \prime}=\underline{r}^{k}\right|\right) g\left(\underline{r}^{\prime \prime}\right)=\operatorname{cg}\left(\underline{x}^{\prime \prime}\right)\right] \tag{3.23}
\end{equation*}
$$

which we may write as

$$
\begin{equation*}
n(\underline{I})=\int d \underline{x}^{6} H\left(\underline{s}-\underline{\underline{r}}^{i} \mid\right) g\left(\underline{x}^{\prime}\right) \tag{3,24}
\end{equation*}
$$

whers

$$
\begin{equation*}
\mathbb{E}\left(\left|\underline{\underline{x}}-\underline{\underline{r}}^{0}\right|\right)=1 /(1-0)\left[\nu c \int d \underline{\underline{r}}^{n} Y\left(\left|\underline{\underline{r}}-\underline{\underline{r}}^{\prime \prime}\right|\right) \pi\left(\left|\underline{Y}^{\prime \prime}-\underline{\underline{r}}^{1}\right|\right)=e Y\left(\left|\underline{\underline{r}}=\underline{\underline{r}}^{0}\right|\right)\right] \tag{3.25}
\end{equation*}
$$

The "slowing kernel" $h\left(\left|r o E^{2}\right|\right)$ will preaumably have sonomhai the character of the Milne kernel and somewhat the charecter of a Gauss kernol since the first paths are compareble with the total displacement. The value of the kernel for large argument will be determined primarily by the first patiss giving the kernel an exponential tail as in the dilne kernel. The quadratic singularity of the Kilne kernal of the first path will, however, bs smoothed over by the later small displacements. A very plausible appromimation which combines these features is the result of compounding a Wilne with a Gauss kernel,

-60~

The Milne and Gauss kernels are determined by a specification of their mean square displacements. The total mean square displacement is the sum of these two. The total man square displacement can be determined in a number of different ways. It has bean measured experimentally and cen be calculated by a variety of simple arguments. One such simple argument will bs given below in this section.

Fermi Formula for Mann r^{2} in Hydrogenous Material

The best calculation is that by Fermi which takes into account correctly the correlation in direction and magnitude between successive pains and the effect of nonhydrogenous scatterers. The Fermi formula is correctly as follows:

$$
\begin{aligned}
& \overline{x^{2}}=2 \lambda^{2}(0)[1+\rho(0)]+2 \lambda^{2}(a)[1+\rho(a)] \\
& +2 \lambda(0) \lambda(a) e^{-\left[a / 2+\int_{6}^{a} d x, o(x) /(1+\rho(x))\right]} \\
& +2 \int_{0}^{2} 2^{2}(x)[1+\rho(x)] d x \\
& +2 \lambda(0) \int_{0}^{a} \lambda(x) e^{=x / 2} e^{n \int_{0}^{x} \rho(\zeta) d \xi /(1+\rho(\xi))} d x
\end{aligned}
$$

This formule was incorrectly given in the original articles), presumably by roason of typographical errors, and citod in the incorrect form in tia Quiticie of G. Hervey ${ }^{4}$). The difference between the two forms of the

Two different methods have been used to detomine the propsr distwibution of the total mean square displacenent between the Mine end aquas pertio of the kernel. The first method, used by Christy, is to take from tho orporimental measurements the dacsy rate of the tail of the slowing distribution at large distancos. This gitstho coofficient ontoring in the Milno ऐexit of the kernel. Whe second method is to distribute the mean fit betwoon the two parts so as to fit correctly both the mean square and mean fourth poncr displacements. These two momentia aan bo calculated by the folloring Straple thoory:

Momonts of the Distribution for Slowing in 日ydrogen
The soattering crose saction of hydrogen follows a fairly good 1/v law from a fow tens of kilovolts up to two or threa milifion volts. The frilure of the $1 / V$ law at emall enorpy is ensily taken into ecoount since there the paths are short, hence contribute only to the Gauss part of the sarnol. The angular distribution of hydrogen scattering foilans a coaino
3) En Fermi, Rio. ©cient., 7. (2), 13 (1936)。

-62
law for forward scattering. The fraction scattered into a range d μ of the cosino, μ, of tho scattoring anglo is $2 \mu d \mu$ for $0 \leq \mu \leq 1$ 。 x the cosine of the scattoring angle is μ, then the onergy is reduced by a factor μ^{2} and the volocity by a factor μ_{0} If wo assuno that this angle and energy distribution and the $1 / v$ law hold down to zero energy, then the distribution of displacements in siowing to zers onerfy is convergont. Moreover, beosuse of tho $1 / \mathrm{v}$ law, this distribution will vary with initial enargy only by a scale factor. Ihe linear soale of the distribution will be proportional to the initial velocity. This fact pormita the dotermination of the first few moments of the distribution by a recursion argument. Vie choose for tho unit of length tho initial moan froo path. In each stage of the argument tho total displaoement will be represented as the sum ar tho first path and the resultant of all successive paths, denotad by E_{1} and r_{2} rospactively, The various noments of this resuitant of the second und succeoding paths, r_{-2}, are related to the correaponding momente of the distribution of the total displacoments $\underset{v_{1}}{ } \underline{I}_{1} \underline{I}_{2}$, by tho scaling relationahip. The direotion of the fixst prith will bo takon to bo along the raaxis. Tho mosn displacoment, \bar{r}_{x}, (the bar here represents the average value) is the sum of the mean length of the first path $-m$ by definition unity mand and mean x-component, $\bar{r}_{2 x}$, of the remaining displacoment, E_{2}, tho first path of which has the maen length s. The mean romaining displacement, \bar{E}, is orionted at an anglo of cosine μ to the x oaxis and is of magnitude μ
 svaraging over the probabibitg efigevitivion ior u fives

In the same way we calculate the mean square diaplacoment,

$$
\overline{r^{2}}=\overline{r_{2}{ }^{2}}+\overline{2 r_{1}} \overline{\bar{r}_{2}}+\overline{r_{2}}
$$

Since the length of the first path is oxponentially distributed, its moan squaro is 2. In the cross term tho averaging over the lengths or the first perth and the xmomponent of the remaining paths can be done separately since they are indepondently distributed. This torm has therefore the man

$$
\begin{align*}
& \overline{z^{2}}=2+2: \overline{x^{2}} \int_{0}^{1} 2 \mu^{3} d \mu=4+\frac{1}{2} \overline{r^{2}} \\
& \overline{x^{2}}=3, \quad \overline{r_{2}^{2}}=4 \tag{3.29}
\end{align*}
$$

Tit is aen from this that aftor one colision the remaining mean squaro dibplacoment is reduced by half. The effect of the first path is therofore sisasiy not negligible. The series of contributions to the mean square diso phecment is rapialy convergent, thus in replacing the part of the slowing balow, say, 30 Hv. by an appropriate Gaussian sproad the subtraction of the affect of this part of the slowing is relatively unimportant. 2he mean squere x-componont, and the fourth-powar displecemont arc

aslculatad in tho same way : : : : : : : :

$$
\overline{x_{x}}=\overline{x_{1}}+\overline{2 x_{1}} \overline{r_{2 x}}+\overline{r_{2 x}}
$$

${ }_{2 \times 2}^{2}$ ia, for a definito μ, equal to μ^{2} tinas tho mean square rocomponont in e direction with an angle-cosine μ with respoct to the x-asis. Take thin diroction in the s-y plane.

$$
\begin{aligned}
& \left(r_{2 x^{2}}^{2}\right)_{\mu}=\mu^{2}\left(\mu x_{x}+\sqrt{1-\mu^{2}} r_{y}\right)^{2} \\
& =\mu^{2}\left[\mu^{2} r_{x}^{2}+\left(10 \mu^{2}\right)\left(\frac{\overline{r^{2}} \cdot \overline{r_{x}^{2}}}{2}\right)\right] \\
& =\frac{1}{2}\left(\mu^{2}-\mu^{*}\right) \overline{r^{2}}+\frac{2}{2}\left(3 \mu^{4}-\mu^{2}\right) r_{x}{ }^{2} \\
& =\left(\mu^{2}-\mu^{4}\right)+\frac{1}{2}\left(3 \mu^{4} \circ \mu^{2}\right) \overline{r_{x^{2}}} \\
& \overline{r_{x}^{2}}=2: 2 * \int_{0}^{1} 2 \mu \mu^{2}\left[\left(\mu^{2}=\mu^{4}\right)+\frac{1}{2}\left(3 \mu^{4} \propto \mu^{2}\right) \overline{r_{x}^{2}}\right] \\
& \overline{r_{x}^{2}}=4+\left(\frac{2}{4}-\frac{2}{6}\right)+\left(\frac{5}{6}-\frac{1}{4}\right) \overline{r_{x}} \\
& \overline{x_{x}}=\frac{56}{9}, \quad \overline{x_{2 x}^{2}}=\frac{20}{9} \\
& \overline{r_{2} r^{2}}=\left(\overline{\left.r_{1}+r_{2 x}\right)\left(r_{1}^{2}+2 r_{1} r_{2 x}+r_{2}^{2}\right)}\right. \\
& =\overline{r_{1}}+\overrightarrow{3 r_{1}} \bar{r}_{2 \pi}+2 \bar{r}_{1} \bar{r}_{2 \pi}^{2}+\bar{r}_{1} \bar{r}_{2}^{2}+\overline{r_{2 x} r_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { !: ! : - : }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\overline{\left(x_{1}^{2}+2 x_{1} x_{2 x} \div x_{2}^{2}\right)^{2}} \\
& =\overline{r_{1}{ }^{4}}+4 \bar{r}_{1}^{2} \bar{r}_{2 x^{2}}+\overline{a r}_{1}^{3} r_{2 x}+4 \vec{r}_{1} \bar{r}_{2 x_{2}}{ }^{2}+2 \bar{r}_{1}^{2} \bar{r}_{2}^{2}+\overline{r_{2}} \\
& =24+4 \cdot 2 \cdot \frac{20}{9}+4 \cdot 6 \cdot 3+4 \cdot 1 \cdot \frac{92}{9}+2 \cdot 2 \cdot \mu+\int_{0}^{1} 2 \mu d \mu \mu^{2} \\
& \bar{x}=182
\end{aligned}
$$

Boinents of Distribution for Slowing in Hydrogen plus Hoavy Hatoria?

This calculation of the second and fourth moments dose not take into account the affect of scattering by nuclei other than those of hydrogen. The effect of the inclusion of heavy eleraents will be taken into account in two successive approximations. In both cases the heavy nuclei will be conminored infinitely heavy compared with the neutron, the scattering elastic and isotropic. In the first approximation the effect of the heavy material will not be taken into account after the first hydrogen collision. In this approximation we have calculated tho mean square and fourth power displacerents. The result of this calculation shows the ratio of the fourth moment to the square of the second moment (vinich ratio determines the distribution of the mean square diaplacomoni between the $k i l n e$ and Gauss kernels) to be very insensitive to the concentration of hoary matorial assumed.

The second approximation used assumes a scattering cross section fecit the heavy material which is independent of the energy. The heavy

-66-
maiorial acattering is then takon into account in all stages of the slowing. The treatment in this approximation is conaiderably more laborious than the pircoding epprozimation and has therefore been carriod unly as far us the oraluation of the accond moment. Since the dependence of the moment ratio on the concentration of heavy matorial is 80 slight in the firet approximafion it was concidered sufficient to use this first approximation in eveluating the momont ratio while using the result of the second approrination method in determining the mean square displacomont. The second moment is more accuratoly determined by the Fermi formula, but this formia is very inconveniont to hse as it involves a number of numerical integrals orer exporimental curves. The mean square displacemont in slowing in water has been enlculated by P. Morrison ${ }^{5}$) using the dermi formula. However we do not now know whether the correct form of the Fermi formula or the incorrect publishod form was used. In the absenos of this knowledge the resulit of the secondapproximation mothod is the most convoniont formula which is of sufficient socuracy.

In the first approximation the sattering probability for hydrogen is afgin taken to be one por unit length for the initial energy and varying $0.51 / v$ as before. The scattering probability for the heavy material is a pigr unit length for the initial energy and zero for smaller onergies. As besfore we divide the overall displacomont into the first path and aubsequent

5) $(\mathrm{CF}-631)$

patias.

\%

The mean length of the first path is now $1 /(1+2)$. The first collision can aither ba hydrogon collision, with probability $1 /(1+a)$, or a heavy matorial collision, with probability $a(1+a)$. If the first collision is prith haavy material, then, since this collision is isotropic, the meen x componont of the remeining paths is zero. If the first collision is with hydrogen, thon since the heavy-material cross seotion is to be neglected thereafter the mean x-component of the remaining paths is just that given by the proceding calculation (3.28), i.as 1.

$$
\bar{r}_{x}=2 /(1+2)
$$

similarly

$$
\begin{aligned}
\overline{r^{2}} & =\overline{r_{1}^{2}}+2 \bar{r}_{1} \bar{r}_{2 x}+\overline{r_{i}} 2 \\
& =\frac{2}{(1+a)^{2}}+2 a \frac{1}{1+a} \cdot \frac{1}{1+a}+\overline{r_{2}^{2}}
\end{aligned}
$$

$\overline{r_{2}^{2}}$ may be divided into two parts. If the first collision is with heavy matarial, with probebility $a(1+a)$, then $\overline{r_{2}}=\overline{F^{2}}$. If the collision is with hydrogen, with probability $1 /(1+a)$, then $\overline{r_{2}}$ is, as before, 4 ,

$$
\begin{aligned}
& \overline{r^{2}}=\frac{1}{(1+a)^{2}}+\frac{a}{1+a} \overline{x^{2}}+\frac{4}{1+a} \\
& \overline{x^{2}}=\frac{8+\frac{a}{2}}{1+a}
\end{aligned}
$$

The rest of the calculatien cipcoover eno tind same way. The result obtained is

$$
\overline{x^{2}} \frac{1656+3176 a+2268 a^{2}+552 a^{3}}{9(1+a)^{3}}
$$

The ratio, $\overline{r^{2}} / \bar{x}^{2}$; varies only slightly with a as seen in the following table.

2	$\overline{r^{4} / r^{2}}$
0	2.875
.2	2.853
.4	2.862
.6	2.887
.8	2.917
1.0	2.951

In the socond approximation the effect of the heavy material scattering is taken into account in all stages. After a hyarogen collision the energy is reducod, hence the hydrogen cross section is increased. Sineo the heavy matorial cross aection is not increased the scale-factor recursion no zongar holds in the oripinal aimple form. If the velocity is reduced by a facior μ we may consider the distribution of remaining paths scaled down by a factor μ if also the heavy material concontration, a, is reduced by the same factor. Thus

$$
\begin{aligned}
& \bar{r}_{x}(a)=\bar{r}_{1}(a)+\bar{r}_{2 x}(a) \\
& =1 /(1+a)+1 /(1+a) \cdot \int_{0}^{1} 2 \mu d \mu \mu^{2} \bar{r}_{x}(\mu a) \\
& F_{x}(a)=\sum_{B=a}^{\infty} b_{s} a^{B} \\
& (a+a) \bar{r}_{x}(a)=b_{0}+\sum_{s=1}^{\infty} a^{8}\left(b_{B}+b_{B-1}\right) \\
& =1+\sum_{s=0}^{\infty} b_{s} a^{s} \int_{0}^{1} 2 d \mu \mu^{3+s} \\
& =1+\sum_{s=0}^{\infty} i_{s} a^{s}\left(\frac{2}{4+5}\right) \\
& b_{0}=2 \\
& b_{B}=-\frac{4+s}{2+s} \quad b_{8-1} \quad B \geq 1 \\
& b_{s}=(-)^{5} \frac{1}{6} \frac{(4+s)!}{(2+5)!}=(-)^{5} \frac{1}{6}(4+s)(3+s) \\
& \vec{r}_{x}(a)=\frac{1}{6 a^{2}} \frac{\partial^{2}}{\partial a^{2}}\left(\frac{a^{4}}{1+a}\right)=\frac{6+8 a+3 a^{2}}{3(1+a)^{3}} \\
& \overline{r^{2}}(\theta)=\overline{r_{1}}{ }^{2}+2 \overline{r_{1}} \overline{r_{2 x}}+\overline{r_{2}}{ }^{2} \\
& =\frac{2}{(1+a)^{2}}+2 \cdot \frac{1}{1+a} \cdot\left(\frac{6+8 a+3 a^{2}}{3(1+a)^{3}}-\frac{1}{1+a}\right)+\frac{a}{1+a} \overline{r^{2}}(a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { : : : .. : : : : : }: \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{r^{2}}(a)=\sum_{B=0}^{\infty} c_{s} a^{B} s \quad \int_{0}^{1} 2 \mu^{3} d \mu \overline{r^{2}}(a)=\sum_{8=0}^{\infty} c_{B} a^{B} \frac{2}{4+\Sigma} \\
& \frac{2+8}{4+6} c_{8}=2 b_{8} \\
& c_{\varepsilon}=(0)^{8} \frac{1}{3} \frac{(A+B)^{2}(3+s)}{(2+3)} \\
& \overline{r^{2}}(a)=\frac{1}{3 a^{2}} \frac{d^{2}}{d a^{2}}\left[a \frac{d}{d a}\left(a^{2} \int_{0}^{2} \frac{x}{l+x} d r\right)\right] \\
& =-\frac{4 \ln (1+a)}{5 \varepsilon^{2}}+\frac{4+34 a+46 a^{2}+18 a^{3}}{3 a(1+a)^{3}}
\end{aligned}
$$

A graph of this function is presented in Fig. XIII.
The compounding of the Milne and causes parts of the Christly kernel is best done with tho three-dimensional Fourier transiona.

$$
\vec{G}(\underline{k})=\int d \underline{s} e^{i \underline{k} \cdot \underline{r}} K(\underline{r})
$$

Since $K(\underline{s})$ is normalized ard symmetric

$$
\begin{align*}
\bar{X}(k) & =\int_{0}^{\infty} 4 \pi r^{2} d \cdot \frac{B i n k r}{k r} K(r) \\
& =\int_{0}^{\infty} 4 r^{2} K(r)\left(1-\frac{k^{2} r^{2}}{3!}+\frac{k^{4} r^{A}}{5!} \ldots \ldots\right) \\
& =1=\frac{k^{2}}{3!} \overline{5}^{2}+\frac{k^{4}}{5!} r^{4} \ldots \ldots \ldots \tag{3.30}
\end{align*}
$$

-720

Hindex Theory

In compounding two kornels as in (3.26) wo find the distribution of the resultant of two indepencently distributed displacements. Tho Fourior transform of the distribution of this resultant is the product of the Pourier transforms of the distributions of the two independent displecom monts. Donoting the sedond and Pourth moments of the first diatribution by a and b, of the sacond by a^{\prime} and b^{\prime} s and oi tho rosultant distribution by A and B,

$$
\begin{aligned}
1=\frac{k^{2} A}{6}+\frac{k^{4} B}{120} \ldots & =\left(1-\frac{k^{2} a}{6} \times \frac{k^{4} b}{120} \cdots\right)\left(1-\frac{k^{2} a_{a}}{6}+\frac{k^{2} b^{\prime}}{120} \cdots\right) \\
A & =a+a^{\prime \prime} \\
B & =b+b^{y}+\frac{10}{3} a a^{0}
\end{aligned}
$$

Thus

$$
\left(B=\frac{5}{3} A^{2}\right)=\left(b-\frac{5}{3} a^{2}\right)+\left(b^{1}-\frac{5}{3} a^{2}\right)
$$

Dsfine

$$
M=\sqrt{\frac{3 B}{5 A^{2}}-1} \text {, and similarly m and m. }
$$

The expression $k, k n o w n$ as tho mindex ${ }^{6}$, dopends only on the character of the dibtribution and not on tho scalo of size.
6) Torminology owing to F .

$$
\begin{equation*}
(H A)^{2}=(m a)^{2}+\left(m^{\prime} a^{p}\right)^{2} \tag{3,31}
\end{equation*}
$$

For a Gaues function, $\left\{=0^{7}\right.$). For a Hilno kernel, $y=1.61245$, for a Iukawa kornol, $M=1.0000$. Taking $B / A^{2}=2.9$, as indicated by the result of tho first approximation mothod for slowing in wator, gives $M=.860$. Writing (3.31) in the form

$$
Z^{2}=\frac{m^{2} a^{2}+m^{8} a^{2}{ }^{2}}{\left(a+a^{\prime}\right)^{2}}
$$

shovs that the magnitude of k^{2} is diminishod by the procoss of compounding Cistributions. This is consistent with the fact that, the limiting form of compounded distributions is Gaussian, with zaro mindex,

Oonotants in the Christy Kornel
In the prosent case one of the two functions is Gaussinn, hence $m^{2}=0$.

$$
\begin{aligned}
& \left.\mathbb{N}^{2} / m^{2}=\left[a / a+a^{\prime}\right)\right]^{2} \\
& \& /\left(a+a^{\prime}\right)=.860 / 1.612=.534
\end{aligned}
$$

Ono-aixth of the sccond momont is knom as the "age" of a neutron distribution, thus the age, A / B, must be distributod about equally botreen the rilne and
7) This is a partial statementof the ageg :oneral property of stability of Gauss distributions

 should bo about 13 parcent $208 s$ than the Milno age: Howerer this tiantment underestimates the Gauss age because of the use of the $1 / v$ lay below 30 Kiv. Sinoe in tho lownensegy range the paths are bmalls this region contributes only to the Gauss part of the kernbl. The increase in the total age producad Dy correcting tho low-energy cross sections must be addod only to the Geuse age. The offeot of this correction is to make tho Gauss age ton or fifteen poreent greater than the age of kilno.

Critical Mast of Water-boilor

The cheracteristic oquetion curve has been calculated for the Haternboiler kernol, (3.25), for two sots of coofficients: ono used by R. Ghristy in his colculation of the ariticel mass of the water-tamped waterioniler, the other correoted by the use of the results of this calculation (30e Figo XIV). Christy'B coofficients give the Geuss are ebouti 10 percent less than the Milne sge in the sloving kernel. Corroctins this ratio makes a. nogligible ohange in the characteristic equation curve in the neif,hborhood of the concentration giving the minimum mass. The extrapolatad exd-point rou colculatod with tho Chriaty coofficionts in this noighborhood and the results are show in fig. KV. The minimum criticel mass,. 580 Kr (calculated, fomever, with $v=202$), agrees with Christy's result. This msas will provebly be increased by about 30 percont if $v=2,0$.

Whe change in the coefficients in the slowing kernel produces a amell but appreciable change in tho charactoristic equation curve away from the optimm rogion. This would produce somo change in tha ontrapolated end-

$-7 \%-$
point. However, it is baliovod that the rosulting chanfe in the aritical mase would not bs epprociable in comparison with the uscertainty in the constitents.

CHAPTER IV. OTHER METHODS OF SOLUTION AND RELATED EROBLEMS

In thia chapter we propose to disouss the various methods of treating intogral equations, other than the end-point mothod, which have proved of value in the prosent work. the two most important of these are the variation method and tho iterativo numerieal solution tha variation method is for most probloms the most accurate method of treatment now in nee. It is quite flaxible and can bo applied to tamped and urtamped problens of almoet any shape, Howover, the difficulty of evaluating the integrals innolved increases rapidiy with increasing complexity of shape. for this reason it has boen appliad to only a few axamples of enoh of coveral typas as goomotry, spheres, slabs, cylindors, and roctangular solids. for this ronson it does not secm particularly pronising for the solution of problems of greater complexity than those already treated.

Nuroerical Mathod

The mumerical mothod is the simplest and probably the most floxible molkod used to date. Although it is the first mothod used which geve reasonmidy accurate recults it is tho loast well devoloped mothod of solution in ueg. In itt presont rudimentary form it can be applied to problams of consicierable poometric complexity only with am enomous exponditure of computa. tional labor. It is hoped that furthor refinement of the tochniques of epplication of this mothod will meke practicable the solution of integral
 in applying this method to the solution of an integral equation of tra forn (1.1) a plausible guess is made as to the shape of the function $n(x)$, say $n_{0}(x)$. This guesbed function is inserted in the right sido of the oquation and the integration carried out nurericslidy. The resulting function, $n_{1}(x)$, is again integrated numeriaally to give a next spprozimation. $n_{2}(x)$ o This iteration process is continued until the sucoessive approximants differ only by a multipicative factor. fhis factor is the highest aigenvelue o. Since $n_{0}(x)$ can be represented as a suporposition of the solutions of the intogral squation for various eigonvalues the rapidity of convergenco mill bo determined primarily by the ratio of the highest to the second hirchest cingnvalua. In tho problems so far treated this ratio has beon of the order oy 1.5 or 2. Four or fivo itarations are usually sufficient to pive a value 0. - Which is atable to e few tonths of one percent. If the numerical Entegrations have boon carried out properly this will be the accurney of the solution. this method has so far been applied only to slabe nnd spheres where the integral equation cun be reduced to ono in one dimension with a ajsplscemont kernel. The iteration process can then be sot up in a vory simple form and can be carried out by relativoly untrained computers. The itoratife numarion solution is of partioular value when not only the oigenvaluo but also the oigenfunction is desirec. a number of solutions of spherical problems for the wilne kernel have been pbtained, however, with fairly crude integration technicues. (Trapezoidal integration is used except for the aingularity of the kernol. which is treated to give

 curves obtained are given in Fifo XVI. A mora careful nolution for a Gavasian kornel was obtained for throe sizes of untanpad" sphores, a=1, 2. 6 and 2 . Tho resultinf curves are presonted in Figa XVII。

In the numerioal treatment of spharical and alab problams tho displecomont character of the one dimensionsl kernsl permits a very sinple integration tochnique, The sot of numorical entrios representing the inernel Is written on a strip of paper. The numorical ontries of the buccessive trial funotions are writton on a parallel strip. The integration is then performod by oumming tho products of edjacent pairs of numbers, the value of ;. beinf determined by the position of the center point of the kernal. A difierent value of x is gotion merely by dieplaoing the sitrips. The nunsrical treatmont of problems for which the one dimensional form of the cornol has not this displacoment property, osge the infinito cylinder, would require making a soparate kounol strip for oco value of x o Tho itam ration method is, of oourse, not rostricted to probleme which can bo reducad to onemdimentional intogral oquations. Eowever, the application of the mathod rould bocome prohibitivoly laborious if the number of entries for integration were large. It is hoped that the ube oi poweriul incegration methods and the judicious choice of representative repions will give reason= ably accurate results for a moderate number of sntries. Preiiminary investigations are now being carriad out. These indicate that it will be ponsiblo to use this method for a limited numbsr of probiems of complicated geonetry. The results of these may bo used to validato simoler recipes which can bo appli.ed to many cases.

[^0]The variation method of solution of intepral equations here dealt With is essentially an appliostion of the familiar Ritz methoc of solution of differential oquations. The kernel is hore a fairly smooth function oro tonding over the entire rogion of integretion, thus small ourors in the ahape of the trial function are much less important then if the kernel involved only a delta function and its derivatives, Thus, for example, in the treatment of tho untampad sphore a parabolic trial function (one free paramater) proved dar more accurate than necessary. The constant trial funotion, however, is not sufficiently accurato for the spheres and presumaly would be atill nore unsatisfactory for more complicated shapos.
In the variation "athod the integral equation

$$
n(\underline{\underline{r}})=0 \int d \underline{x}^{0} K\left(\left|\underline{r} 0 \underline{r}^{\prime}\right|\right) R\left(\underline{r}^{0}\right) n\left(\underline{r}^{\prime}\right)
$$

is axpreesed by the variation equation

$$
\begin{equation*}
\delta(I / N)=0, \quad I / N=I / c \tag{4,1}
\end{equation*}
$$

Finere

$$
\begin{aligned}
& I=\int d \underline{i} d \underline{r}^{y} K\left(\left|\underline{r} \infty \underline{r}^{\prime}\right|\right) F(\underline{r}) F\left(\underline{r}^{\prime}\right) n(\underline{r}) n\left(\underline{r}^{\eta}\right) \\
& \|=\int d \underline{r}(\underline{r}) n^{2}(\underline{r})
\end{aligned}
$$

and δ denotes varlation of $n(\underline{z})$. Usually only the smallest eigenvalue, c, is of intereat, hence the groatest maximum of I/N. This mothod has
 obteined and a comparison with the ondmpoint method rasuits are given in Figg. XVIII, A, B and Co For the simplest shapos the oaloulation was neually mado mith e constant and with a parabolic trial function. tho consitant trial function result is given and also the minimum obtained by varyjng the ono effective free paramotor in tho parabolic trial function The non-oubical rectanguiar solids wore caloulated with two free perameters and the finite cylinders with three. In all cases the ondmpoint method was uned to extend the fer variation results to other sizes.

Integral Boundary Condition Mothod

Anothor analytic approximation mothod which was used in tho eerly stages of this investigation, the integraluboundary-aondition method, gives reasonably acourate results. In this method the aoympotic intejior solution is used throughout osch region of constant F. The phases of these intorior solutions are determined by the reguironent that at the boundaries the intogral equation be satisfisd (cf. fA-5). Here also the approximation of asoming the several regions infinitoly thick is of value. For example. il we apply this boundary condition to an untamed surfaco with the Milne kernel wo have,

$$
\begin{aligned}
n(x)= & \sin k_{0}\left(x+x_{0}\right) \\
\sin k_{0} x_{0} & =\frac{0}{2} \int d x \pi(x) \sin k_{0}\left(x+x_{0}\right) \\
& =\frac{c \sin k_{0} x_{0}}{2} \frac{\tan { }^{-1} k_{0}}{k_{0}}+c \cos k_{0} k_{0} \frac{1 \cdot\left(1+k_{0}^{2}\right)}{1 k_{0}}
\end{aligned}
$$

This, with tho characteristic oquation $\left(\mathrm{c} / \mathrm{k}_{a}\right) \tan ^{-1} k_{0}=$. , gives

$$
\tan k_{0} x_{0}=\frac{1}{2} \frac{1 \operatorname{lin}\left(1+k_{0}^{2}\right)}{\tan -1 k_{0}}
$$

A oomparison of the value of x_{0} so obtained with the oxtrapolated endpoint solution is prosented in this table

k_{0}	x_{0}	
	Integral Round. Cond.	Entrapolated End-Point
0	.5	.7304
.5	.472	.6590
1.0	.426	.5584
1.5	.560	.4668
2.0	.314	.3954

gne shows this solution to be reasonably aocurate for the intoresting range of k_{0} and most inacourate for smell k_{0} for which such inaccuracy is Luss significent. This method is more accurate in tamped problems whera the deviations fron tho asymptotic solution are smaller. The only advantage of this method over the extrepolated endrpoint method is the ease with which it can be applicd to new kerncls. The integrals involvod can uaually bo araluatod analytionily or by an gasy nurierical solution.

A. Dedo of an Isotropic Surfaco Source

A problem closely ralated to thet of the one-boundary solution of the integral equation is the albodo problem. Rere the inhomopeneous solution of the samo intogral equation is sourht, the inhomogeneous term boing a surface flux of incident neutrons distributod in angle in a specifiod way. The general case, ive. for an argitrary ancular distribution of incident neutrons, has been treatod oractly by Ialporn, Iuenebure and claris ${ }^{8}$. Thoir treatment uses much the eame method of analysis as the present extrapoisted ondrpoint method. It was their treatmont which suggestad to us Ghis line of attack on problame of this type. Thore is one special case of the glbedo problem which can be solved exactly by a much simpler method than this. As this method may prove of value in related problems wo present it here: This special case is that for which the number of incident neutrons is uniform in argle. (This distribution is to be distinguishod from that callod isotropic by Halpern, Luonoburg and Clark, which has its flux uniform in solid angle.) The incident distribution treated here might be roalized by irjadiating with thormal neutrons a thin layer of fissionable material on the surface of the half-infinite modium whose albodo is considered. Fidf of the fission noutrons produced will onter the scatierine modium uniformly In angle, The scattering material is assumed to produce only isotropic

APPRO ED ${ }^{\bullet}$ FOR PUBLIC RELEASE
elastic scattering and absorption.
We first neglect the absorption of noutrons in the scattering modium and compute the fraction of the incident neutrons raturning acrass ihe boundary after any spocified number of collisions. By sumning this scixas with tho appropriato powers of tho reflected fraction in oach rollision the total albedo is obtainad as f function of the ratio of scattering and nbsorption aross soctions. Ve first compute the fraction returning after n collisions for the first fow integers. Tho serieg suggested by this result is then verified by mathematicul induction.

The fraction of the incident neutrons returning after one collision
in che fourth. This follovs from the fact that the incident neutrons are distributed uniformly in (tho cosine of the) angle betwasn 0 and $\pi / 2$. Pitor boing, onco isotropically scatterod, tho noutrons are divided into two equal parts, those still soing formard and those roturning The raturning nali of the neutrons are distributed in angle about the outward normel ornctily as the incident noutrons were about the invard normal. Thus thoir distribution of m-component path length before collision (x parallel to the normal) is oxuctly that of the incident noutrons: i.e. their distribution in disiance from the boundary after the ifirbt collision is tho same as the dietrimation of (x-component) displacement before having another collision. Of the half of the incidont noutrons returning toward the boundary after the first collision, half will aross the boundary without sufferinp a further collision.

Fig. II

The fraction roturning after two collisions wo divide into two parta: thoso, $\dot{i}_{\mathfrak{i}}$, still going forward afiter their fizat coliision which wome back after their second aollision and oross the boundary without furthor collisions, and thoses f_{2}, which are returning aftor thoir first collisions, have another collision bofore rsaching the boundery ana then croas the boundary without another collision.

Fig. III

rhe first fraction, f_{1}, is the probobility, $\overline{1 / 2}$, that a neutron is still going forward after its first colliaion, times the probability, $1 / 2$, that it go backward after the second collision, times the probability that the bacikard displacement be greater than the sum oit the two forward displacementse The fraction, f_{2}, is tho probability, $1 / 2$, of going bacloward after the first collision, times the probnbility, $2 / 2$, of poing backwerd after the second collision, times the probsbility that the forward displacement be less than the sum of the two backward displacements but not lese than the finet of tham. Tho sum of these is

$$
\underset{\sim}{2}[P(1+2<3)+P(1>2,1<2+3)]
$$

where the firgt P represents tho probability that the sum of two displacements be greater than a third, the second P tho probability that one displacement be groater than a second but less than this socond plus a tivir. The Pirst P may aqually wall be writton $P(3>2,3>142)$, the prom bability that one displacemont bo greator tian another snd also greater than this other plus still anothor (since if it is greator than both it is greater than gither one). Since the indices, 1, 2, 3, havo no special significance Doyond laboling the several paths all of which hava the same probability distribution in lenfoth, tho sum becomes

$$
\begin{aligned}
& 1 \\
& \frac{1}{4}[P(1>2,1>2+3)+P(1>2,1<2+5)] \\
& =\frac{1}{2} P(1>2)=\frac{1}{8}
\end{aligned}
$$

 probability that any one path exceed another.

Gigo IV

Similarly the fraction of neutrons returning after three collisions is

$$
\begin{aligned}
& \stackrel{2}{8}\{P(4>1+2+3)+P(3<1+2,3+4>1+2) \\
& +P(2<1,4+2>1+3)+P(1>2+3,1<2+3+4)\} \\
= & \frac{1}{\delta}\{[P(4>2+3,4>1+2+3)+P(1>2+3,1<2+3+4)\} \\
& +P(3<1+2,3+4>1+2)+P(2<1,4+2>1+3)\} \\
= & \frac{1}{8}\{[P(1>2+3)]+P(3<1+2,3+4>1+2)+P(2<1,4+2>1+3)\}
\end{aligned}
$$

fince

$$
\begin{aligned}
& P(1>2+3)=P(3>1+2)=1-P(3<1+2) \\
& =1-P(3<1+2,3 \div 4>1+2)=P(3<1+2,3+4<1+2) \\
& P(1>2+3)+P(3<1+2,3+5>1+2)=10 P(3<1+2,3+4<1+2) \\
& =x-P(3+4<1+2) \\
& =1-\frac{1}{2}=\frac{1}{2} \\
& P(2<1,4+2>1+3)=P(2<1,4>3,4-3>1-2) \\
& =P(2<1) P(4>3) P(|a-3|>|1-2|) \\
& =\frac{1}{8}
\end{aligned}
$$

The total fraction returning after thras oollisions is then

$$
\frac{7}{8}\left\{\frac{1}{2}+\frac{1}{8}\right\}=\frac{5}{64}
$$

Similarly calculated, the fraction returning after fous collisions is $7 / 128$.

$$
\frac{1}{4}, \frac{1}{4} \frac{3}{6}, \frac{1}{4} \frac{3}{8} \frac{5}{8}, \frac{3}{4} \frac{3}{6} \frac{5}{8} \frac{7}{10}, \ldots \ldots
$$

buggesting that the fraction returning aftor n collisions, f_{n}, is $c_{n}^{2 n+1 / 22 n}$ where c_{b} is the number of combinations of a thines taken b at a time,

$$
1, \quad \frac{3}{4}, \quad \frac{3}{4} \cdot \frac{5}{6}, \quad \frac{3}{4} \cdot \frac{5}{8} \cdot \frac{7}{8}, \quad \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \frac{9}{10}, \ldots \ldots
$$

Thus after n paths (at the nth collision) the fraction romaining is $c_{n}^{2 n / e^{2 n-1}}$. We show that this is irue for all n as follows: Tho serios or. n paithe joined by the $n o l$ collisions can bs represented as a series of cycles, each being on oxcursion into the scattoring modium and a turaing back. Each of the n paths exoept the first is equally likely to be girected into the medium or out. Similarly each axeopt the firat is as lijely to be direoted in the eame sense as the precoding as in the opposite seneo. Thus at ach collision there may or may not be, with equal probabi?iky, an inversion of direction. The first, third. fifth, otes, euch invertions determino successive cyclea. If n is 28 or $2 s+1$ thers moy be at most a cycles. The number of cycles is half of the number of invorgions or half of one plue the number of inversions, whichever is iritogral. Thus for $n-1$ collisions saparating n patha, the probibility that there be cycles is the probability that there be among the $n-1$ sollisions 2b-1 or 2 s inversions. This probability is

$$
\frac{1}{2^{n-1}}\left(c_{2 n-1}^{n-1}+c_{2 s}^{n-1}\right)=\frac{1}{2^{n-1}} c_{n s}^{n}
$$

The total displacoment in each cyele may be either positive or nagative rith a symantric probability law just as in anch path. Tho probsbility

inu is the s\&o for asch of the s cycles so long as the number of pathe sh the various cycles is not spocifiod. The probability that nowhere in thes as eycles doen the path cross the boundary is just one half of tho prodsidility thist aiter a seperite patha there be no rocrossing of the onundary. The factor $1 / 2$ arises fron the fact that in the original probiom i4, mas spooifisd that the firet path is directed into the medium. Ihis will ing true only half of the tine for tho first eycle.

He raske the ansatz that the frection of neutrons remaininf after n guins is $c_{n}^{2 n / 2^{2 n}=1}$ ar suggested by the firet fow terms. Then aince the rixst lino of argument uaed to find thia probability applies ogually well io a sarios of a cycles (ercopt for the factor $1 / 2$) it mast be true that fhe probability of ramaining antor n cyclea is $c_{n}^{2 n / 2^{2 n}}$. Since, homever, bho probability that in n paths thare bs is cyoles is $\int_{26}^{n} / 2^{n-1}$ and ihe probability of remaining in the atediun in these s cycles is $c_{5}^{2 s} / ?^{2 s}$ the total probsbility of romaining, after n paths is

$$
\left(1 / 2^{n-2}\right) \sum_{s} e_{2 s}^{n} e_{s}^{2 s / 2^{2 s}}
$$

wharg tho sumation is carried over all integers, s, for which tio toro combinatorial symbole do not vanish. This expression will bo recognizod as itha constant term in the double binomial expansion of

$$
\begin{aligned}
& \left(1 / 2^{n-1}\right)\left(1+\frac{x+I / x}{2}\right)^{n} \\
& \therefore\left(2 / 2^{n-1}\right)\left(\frac{\sqrt{x}}{\sqrt{2}}+\frac{\sqrt{1 / x}}{\sqrt{2}}\right)^{2 n} \\
& \therefore\left(2 / 2^{2 n-1}\right)\left(\sqrt{2 \pi}+\frac{1}{\sqrt{x}}\right)^{2 n}
\end{aligned}
$$

以保 which the constant tom is $c_{n}^{2 n} / 2^{i n}-1$. Thue if the ansata is irue for intogera up to n o it mast also bo true for intogers up to $2 n$. Since it is trua for the first fow values of n it is therefore truo for all n. Eering now the fraction of incident noutrons returning after n collisions in the abzence of any absorption, we compute the albodo as a function of the anount of absorption by inultiplying aach suoh fraction by tino appropriate porer of the refloctivity, $8, i$ ou the fraction santtered ar oncin collision, and summing on n. ihis fives for the albedo as a function of the roflectivity, $A(3)$.

$$
A(s)=\frac{2-2 \sqrt{1-5}}{E}-3
$$

Jhis result is consistent with the asymptotic formula derived by Fermi for the catie, $10 \mathrm{~B} \ll 1, A(s) \cong 2-2 \sqrt{208}$. A graph of tho albedc for "isotropic"incidenco is given in Fig. XIX.

Anotior related problem is that of the detonation probability for slightly hypororitical distributions. For such a distribution of matorial an initial dietribution of noutrons is cortain to increase in mamber exponentially to the point of explosive expansion only if the initial numbar is so great that statistical fluctuation can bo neglecied. A guestion of intorest, therefore, is the probability that a single neutror: irtroduced into the distribution of matorial composine the prodget in some rendon way load to "ignition". For simplicity we assume that the "random wi. $y^{\prime \prime}$ in which the singlo neutron is introduced have a probebility distribution which is of the sam shape as the spatial dopendence of the hyperaritiosl solution of the integral equation. The extent to which the distrinbution of material is hypercritical aill be defined by the assumption that the probability thet a noutron in the gadget produce a fission process (thus giving two neutrons) is p, the probability that it secape or be saptured without produoing fission is $q=1$ op. Then in osch genoration. so definod, the number of neutrons iacreases in the mean by a factor $2 p=1 \Leftrightarrow$. Phis oncess, \in, is token as the measure of mpercriticelity, in donote by P_{n} the probability that an initiel distribution of n noutrons lead to ignition. Since the time acale is of no sienificance in this problem, we disregerd the actual order of the processes involved and consider that first one, then another, etc., of the neutrons makes the choice betwon death and multiplication. Sith this view it becomss clear that

$$
P_{n}=p P_{n+1}+q P_{n-1}
$$

with the condition

$$
p_{0}=0, \quad P_{\infty}=1
$$

Fitr look for a solution of the form $P_{n}=a^{n}$, or a linaar combination of two such solutions (tho difference equation is linear and homogencous). Inserting this form for P_{n} givos

$$
\begin{aligned}
a & =p a^{2}+q \\
a & =\frac{1 \pm \sqrt{1-4 p q}}{2 p}=\frac{1 \pm \sqrt{1 \sim A p+4 p^{2}}}{2 p} \\
& =\frac{1 \pm(2 p-1)}{2 p}=\frac{1 \pm \epsilon}{1+G}=1, \frac{1 \alpha \epsilon}{1+\epsilon} \\
P_{n} & =1^{n} o\left(\frac{1 a \epsilon}{1+\epsilon}\right)^{n} \\
P_{1} & =\frac{2 \xi}{1}
\end{aligned}
$$

nihus the ignition probability is small for slightly hyporcritioal distributions and increases somowhat slower than linearly for increasingly hypercritical distributions.

At a time considarably aftor the introduction of the single rautron the axpectation value of the number of noutrons present is just the number of neutrons that would be present if the distribution had grown

APPROVED FOR PUBLIC RELEASE

-92~
exponentially without statistical pluotuation. Since this fluctuation gives only a small probability that there be any neutrons present (for singli \in), then the msan number present if this number is other than zero, i.e. if ignition has occurred, must bo greater by a factor $(1+\epsilon) / 2 \in$ than the number which would be proauced by a smooth non-statistical growth.

The ond-point method gives a rigorous solution to displacement ixtegrai equetions where tho renge of integration covers all space to one side of a plane boundary. It mas shown in. Chapter II that this solution for a kalf-infinito madium can by ueod to supply a recipe for the solution of slab and sphere probloms which is correct in the limit of lerge thickness or diameter and which should be of sufficient socurocy throughout tho interesting range of sizes. A comparison with the variation-method results justifiec this expoctation. There are many problems of interest in the prssent worl involving considerably more complicatad shapes. It will bs shovm in this chapter that the end-point method can be applied with reaconable sopurecy to many auch problems, oven where no simplo arpument cin be given to justify the accuracy of the approximation. In a fow problems of more complicatod shape both the variation and end-point methods have beon epplied. The close agresment of the results of the two calculations is takon as evidonce that the and-point method can safely be used in still more oonplicated cases, for which the variation mothod can be used only with a prohibitivo amount of labor.

S. THE INFINITM CYLIHDER

The radial dependence of the asymptotic solution in the interior of on infinftely long cylindar is $j_{0}\left(k_{o} r\right)$. The true solution will drop below this asymptotic solution near the surface but will not renoh zero, The edge, of the cylinder vill thorefore noo:ar for an r somewhet smaller than the first root of $J_{0}\left(k_{0} r\right)$, i.e。 $2.4098 / k_{0}$. The amount by which this first root exceeds the redius may bo called the "cylindrical end-point". It has not so far proved possible to identify the cylinder problem with some corresponding plans problom. However, for large radius, where the curvature is negligible, this endopoint must have the some F-dapendence as for a plane surface. Moreover it is seen from tho analysis of Chapter II that curving the surface in both directions, i oo in replacing the plano by spherical surface, the end-point distance is not changed. Thie suggests the hypotiosis that in introducing a curvature in one diroction, ioo. in replacing the plane by a oylindrical surface, the end-point distance will still not be greatly changed. lie therofore calculated critical radii for infinite cylinders of Frvalues by jaking the radius less than the first roat of the Jo by the same extrapolased end-point distance as that used for the slab and sphero. The critical radius for a fow values of F has also boen celculatod by the varintion method (D. R. Inflis, LA-26). Both results are prosented in Fig. XVIII-A. It may be seon from this figure that the discropancy, if any, is less than the accuracy of the variation calculation. This verification of the x ypothesis used in this rocipe for the end-point solution of cylindricel problems extinds throuphout the usoful range of radii. be as follows: The a symptotic solutions in the core and tampar are the Besselefunction solutions for the values of k_{0} fixed by the charaoteristic oquation. If the tamper is finite the phase of the asymptotic aoiution in the tampor is fixed by putting its first root at the extrapolntod ond-point: distance! beyond tho boundary. If the tamper is infinite, repularity at infinity detormines the phese. fine boundary condition at the corootamper intarface requires that the logarithmic derivatives for the core and tampor agree asynptotic solutione at a radius which is less than the actual core radius by the amount Δx_{0}. Both the endnpoint, x_{0} ond the discrepancy term Δx_{0} aro to be taken from the graphs oalculated for plane problems.

No suffiaiently accuratio variation solutions have so far been porformod for tamped infinite cylinders thus no oheck is available on the accinacy of this recipe. Rowever, because of the close check for untamped cylindere wo are confident that this recipe is as accurate as is necossary.

2. FINITE CYLINDERS

Untamped Gylinders

The buccess of the extension of the and point mothod to infinite cylinders encouraged the attempt to find a similar recipe for untamped finito oylinders. The following recipo was triod: For a definito valuo of F tho intrerior solution is taken as $\cos k_{1} z J_{0}\left(k_{2} r\right)$ whora z is distance from the center, paraliel to the axis. $k_{1}^{2}+k_{2}{ }^{2}=k_{0}^{2}$ where k_{0} is detormined by the characteristic equation. The halfolength of the cylinder

ia taken less than the first root of $\cos k_{j} z$ by the amount x_{0}. similarly Whe radius is taken less than the first root of $j_{0}\left(k_{2} r\right)$ by the emount x_{0}. where $\$_{8}$ is the oxtrapolated ond-point distance calculated for plane boundaries in the absenco of transperse wavse (i.e. x_{0} is dotermincd only by F). Thus the asymptotic solution vanishes overywhere on a eylinder whose radius and half-length exceod those of the actual cylinder by r_{o}. It is not clear how woll this solution treats the neutron distribution near the odges. It might equally :oll have been assumed that the surface on which tio asymptotio solution vanishes is that surface, all points of which are at a distance x_{0} from the nearest point of the actual cylinder of material. This surface is a cylinder with its edges rounded off to the ahape of a toroid. The solution of the wave equation with this boundary condition is much more complicated than that first triod. Since thes uncertainty in the ureatment of the corners exists it seems unprofitable to include in tho recipe tho further complicntion of taking into account the effoct of the irrensverse variation of the solution on the ond-point. Experience with the cubo (cf. Section 3) indicatos that the error made in nerlectinr the transvorse wate is of the same order of magnitude as the orror in the treatment of the corners and edfos. Since both the transpersemwave effect and the affect of the inaccuracy in the troatmant of edges.and corners are amall, it is to be expectad that this recipe for the troatront of inito oylindors will ba iairly accurate. A numbor of spacial cases ware treated aiso by the Wariation mothod and no discropancy groator than a fow tonths of ono porcent wes fount. The dotails of both treatments and a comparison of the results

is given in LA-31. The results of the extrapolated end-point method treatment are givon hore in Figo XX.

Tamped Cylindera
For the end point treatment of tamped finite cylinders a recige 1 corrasponding to that of the tamped infinito cylinder can be stated. The corresponding recipe would be ag followe: In each medium the asymptotic solution is a solution of the wave oquation in which the scale factor, k_{0} is determined by the charactoristic equation. At each open boundary the condition is the vanishing of the asymptotic solution a distanco x_{0}, cielined es before, beyond the boundary. At each interface between two materials the boundary condition is the equality of the logarithmic derivem tivas at a distance Δx_{0} into the modium of lower F. If the tamper is a concentric cyinder of the bame length as the coro, this recipe an bo applied with reasonable ease. If the tamper extends on all aides of the cylindrical core the application of this recipe becomes very difficult since no simple solutions of the wave equations give equal solutions and derivetives at the extended boundarios. For such problems, some sort of numerical solution may provo more useful.

§3. rectangular solids

For untampod reotangular solids the samo rocipe as that used for tho finito cylinder has been employed. The asymptotic solution is required to vanish at a distance x_{0}, again a function of F alone, boyond
anch boundary, or rather on the piane iacul surade so detormined. The asymptotic solution has then the form

$$
\cos k_{1} x \cos k_{2} y \cos k_{3}:, \quad k_{1}^{2}+k_{2}^{2}+k_{3}^{2}=k_{0}^{2}
$$

The most convenient procedure for finding solutions is to fixs F and two of the linear dimensions. F determines k_{0} and $x_{0} \quad j_{0}$ and the two linear dimensions fix k_{1} and k_{2}, hence k_{3}, k_{3} and x_{0} then deternine the romaning linear dimension. Variation calculations have bean perforned by Dlum and Davis (LA-47) for several cubse and sevoral reotangular solids with ane square cross section. The end-point and variation reaults for oubes aro given in Fig, XVI, Ths discrepancios between the end-point and variation resultis are of the order of $1 / 2$ to 1 percent for both cubss and reocangular solids. In an attempt to determine how this error is distributed betwoen. the various roughnesses in the treatment a few of tho oubos were recalculatod texcing into account the offect of the transverse wave. This overcorrects the orror by about a factor of two; thus the error with this correction is alout as great as before. It would therefore seem that the error arising from the neglect of the transverse weve is of the same order as that from the roughness in the treatment of corners and edges. It is therefore an inconsistency to correct one of thase errors without corrocting both.

For a tamped rectengular solid tho endmpoint recipe is the same als for the finite oylinder, the agymptotic Bessel function solutions having boen replaced by tho appropriate cosines (or hyperbolic functione in regiona where E is less than one). Hare too the actual application of the boundary condition betwean the core and tamper may be very tedious.

The erceedingly acourate reaults of the end-point mothod in treating elabs, spheres, oylindors (infinito and finite), and roctangular solide suggests that it can be axtonded to more complicatod shapos. In particular, its success in tho cases of cylinders and rectangular solids, whore we have not found a rigorous thooretical motivation for it, fives cono siderable support to our assertion that the extrepolated ond-point distance can be detormined only from F and is independent of the particular symmetries of the boundaries; ioe。 it is the same function of for all shapos a slabs, shperes, cylinders, rectangular solids, ice eramm cones, etc.

Hence we enunciate the following reoipe for the axtrapolated ondpoint mothod, which can be applied to any sheped solid in which all surfacos are exterior surfaces; i.e. no part of a surface can see another part: hollow objeots and objects having sawtoothed surfaces are excluded: In each medium (dofinite value) the asymptotic solution, which ss a solution of the wave equation with the magnitude of its propagation vector, k_{0}, dotorminod by tho chnracteristic oqusicion, is estoblishod. (It is assumed that the thickness of the medium is not smell compared to a moan froe path). At all open koundaries this asymptotic ware-oquation solution is taken to vanish at an extrapolated end-point distance x_{0} (a function of p alona) boyond the boundery. At each intorface between two matorials, the boundary condition is the equality of the logarithmic derivetives of the two solu~ tions at a distance Δx_{0} into the modiun of lower F. The values of x_{0} and Δx_{0} are the values belonging to the plane problem of the same F. (af. Fige. VI, VII, VIII for the kilne kernel, Fig. XV for the Gauss Kornel.)

One shape to thich this recipe is easily applicable is an untamped chunk of matorial bounded by two surfaces, one plane and ono spherical, so eituatod that the expanded surface on which the asymptotic solution is to vanish is a homisphere. Tho waverequation solution with this boundary condition is $\frac{13 / 2\left(k_{0} r\right)}{\sqrt{p}} P,(\cos \theta)$. If, for oxample, we telle $F=1,4$ خhon i_{0}. is 1.261 and x_{0} is. 5084 . The first root of $3 / 2$ occurs at an argument of 4.4936 , hance at a radius of 3.564 . Diainishing this by tho laares 3.056. The volume of tho rosulting "halfoloaf" is then 45.0 which is 38 percont greater than the volume of the critical untamped sphere of the bamo fovalue. If we compare this result with the minimum volumo for a finite cylinder (at a length slightly less than the diameter) or the volune for a sube, both about 5 or 6 percent greater than the volume for a sphere, it is seen that tho excess volume increases first slowly, then more rapidly, ss the departure from spherical shape increases.

A more general shaps of mhich the above is a speoial case to which this usthod can be applied with roasonable ease is that of the untamped "ice cream cono", ioo. a convex mass boundad by a cone and cappod by part of a sphore. The radius of curvature of the sphorical cap and the length of tho cone may not be choson independently but are related through the angle of the cone and the value of Fo The angle of tho cone may be anything between 0 and $\pi / 2$ in comatitude. In general the order of tho Lependre and Bessol functions will not be oimple (e.f. integral or halfintegral)。

$-101=$

In general, any shapa can be treated by this method with raasonable ease if the surface obtained by axpanding in this way by one axtrapolated end=point (a function of F) is a surface on which a known wave function first vanishes.

CHAFIER VI. THE EVALDATION OR EQUIVALENX CONSTANTS

In Chapter II, Section 2, we set up the integral equation for the multiplication and diffusion of noutrons. It was thero assurasd that a11 processes are isotropic and that the neutrons are monochromatic. In problems of physical interest those ascumptions are not justified. An the akect integral equations, taking into account both the anistropy af soatter. ing and the spread in energies, is much more difficult to solve, we look for appropriate averago constants to introduce into the simpler integral equation which will take account of these effects. Since the size is detemnined primarily by k_{o}, the root of the characteristic equation, and onjy secondarily by the extrapolatad end-point, we choose the equjvalent corstants to give k_{o} correatly and disregard any ofiect on x_{0} other than that of k_{0}.

The Velocity- and AnglomDepondent Integral Equation
The full intogral oquation taking both effects into account is

$$
\begin{align*}
& n(\underline{r}, \underline{v}, t)=\int d \underline{V}^{y} d s n\left(\underline{r}-s \hat{v}, \underline{V^{\prime}}, t=\frac{s}{|V|}\right) e^{-s \sigma(|V|)} \\
& {\left[\sigma_{s c}\left(\underline{v}^{\eta} \rightarrow \underline{v}\right)+v \cos _{f}\left(\underline{v_{n}} \mid\right) x(\underline{v})\right]} \tag{6.1}
\end{align*}
$$

where $n\left(r_{,} \nabla_{y} t\right)$ is the density of neutrons at point \dot{v} volocity \mathbb{V} and

=105~
at time t. Here \hat{v} denotes a unit vector in the direction of the vector $\underline{\Psi}, s$ is the distance from the point \underline{E} in the direction $\mathbb{V}, \sigma(|\vec{V}|)$ is the total probability of scattering or fission par unit length at velocity Vo $\sigma_{a s}\left(V^{i} \rightarrow V\right)$ is the probability per unit length of the scattering of a neutron of velocity $\mathbb{V}^{\prime \prime}$ into a unit velocity volume element at \boldsymbol{F}. $\sigma_{\mathfrak{f}}(|v|)$ is the fission probability per unit length and $\chi(\underline{V})$ the fission spactirumo

Equivalence of the Boltaman Equation and the Integral Equation
This full form of the integral equation may be dorizisd from the Boltaman equation as follows:

$$
\begin{align*}
& \frac{\partial n(\underline{\underline{r}}, \underline{v}, t)}{\partial t}+(\underline{\nabla} \cdot \underline{\nabla}) n(\underline{\underline{v}}, \underline{v}, t) \\
& \quad=\int d \underline{v}^{\prime}\left|\nabla^{\prime}\right| \sigma\left(\underline{v}^{\prime} \rightarrow \underline{\underline{v}}\right) n(\underline{\underline{r}}, \underline{\underline{U}}, t)=|\nabla| n(\underline{\Sigma}, \underline{\Psi}, t) \sigma(|\nabla|) \tag{6,2}
\end{align*}
$$

inhere

$$
\sigma\left(\underline{\underline{r}}^{2} \rightarrow \underline{v}\right)=\sigma_{s c}(\underline{\underline{u}} \longrightarrow \underline{\nabla})+v \sigma_{\mathrm{f}}(|\nabla|) X(\underline{v})
$$

define s as before so that $s=0$ at r, increasing in the direction of of.

$$
\begin{aligned}
& \nabla \cdot \nabla=-|\nabla| \frac{\partial}{\partial s} \\
& \text { define } \\
& \xi=\frac{-s+\nabla t}{2}, \quad \eta=\frac{B-\nabla t}{2},
\end{aligned}
$$

them

$$
\begin{aligned}
& =\xi=\xi, \quad \text { vt }=\xi=\eta \\
& \frac{\partial}{\partial \xi}=\frac{1}{\nabla} \frac{\partial}{\partial t}=\frac{\partial}{\partial c}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\lambda}{\partial \xi_{\zeta}^{\xi}}\left[0^{\sigma(|\nabla|) \xi} \Omega(\underline{\Sigma}, \underline{\nabla}, t)\right]=e^{\sigma(|\nabla|) \xi} \int d \underline{V}^{\rho} \frac{\nabla^{\prime}}{v} \sigma\left(\underline{V}^{\prime} \rightarrow \underline{\nabla}\right) n\left(\underline{I}, \underline{V}^{\prime}, t\right)
\end{aligned}
$$

 to $\frac{7 i}{2}$
since $n(\underset{y}{r}, \underline{V}, t)=0$ at $8 m$

The solutions of equation (6.1) in full open space have sootorable apace, time, and velocity dopendences.

$$
n(\underline{E}, \underline{V}, t)=e^{i \underline{E} \cdot \underline{v}} e^{\gamma t} n(\underline{v})
$$

Here $n(V)$ depend a only on the magnitude of v and the cosine, th, of the
angle it makes with the direction of k . Than (6.1) becomes

$$
\begin{align*}
n\left(\sigma_{0}, \mu\right) & =\int_{0}^{\infty} d s \theta^{-\sigma(v)}-i s \mu k-\gamma_{s} / v \int d v^{\prime} d \mu^{y} \sigma\left(v^{\prime}, \mu^{\prime} \rightarrow v, \mu\right) \frac{v^{\prime}}{\nabla} n\left(v^{v}, \mu^{\prime}\right) \\
& =\frac{1}{\sigma(v)+\gamma / v+i \mu k} \int d v^{\prime} d \mu^{k} \sigma\left(v^{\prime}, \mu^{\prime}, \rightarrow v_{\nu} \mu\right) \frac{v^{i}}{\nabla} n\left(v^{\prime}, \mu^{i}\right) \tag{6,3}
\end{align*}
$$

We study separately the effect of anisotropy of scattering and of velocity spread.
3. ANISOMROPIC SCATTERING

We here assume that the neutrons have only one velocity, say unity. Then (6.3) becomes

$$
n(\mu)=\frac{1}{\sigma+\gamma+i \dot{\mu}} \int d \mu^{i} \frac{\sigma\left(\mu^{i} \rightarrow \mu\right)}{2} n\left(\mu^{i}\right)
$$

Fission will still be assumed isotropic, scattering will be assumed to coopered on μ, the cosine of the scattering angle, as

$$
\sigma_{s o}(\mu)=\sigma_{0}+\sum_{n} \sigma_{n} P_{n}(\mu)
$$

then

$$
\begin{aligned}
& \phi(\mu)=\left(\sigma_{0}+\mu \sigma_{\rho}\right)+\sum_{n} \sigma_{n} P_{n}(\mu)
\end{aligned}
$$

Where $\sigma=\sigma_{0}+\sigma_{f}$ and $f=\left(\nu \infty 1 ; \sigma_{f} /\left(\sigma_{0}+\sigma_{f}\right)\right.$. If the original direction makes an angle cosine, $\mu_{\text {, }}^{\prime}$ with the polar axis, :"a expand the Legendre polynomials in terms of spherical harmonica in μ and, μ^{8}. Averaging over tho azimuth gives

$$
\sigma\left(\mu^{i} \rightarrow \mu\right)=\sigma(1 * f) * \sum_{n_{i}=1}^{\infty} \sigma_{n} P_{n}\left(\mu^{i}\right) P_{n}(\mu)
$$

Taking $\quad n(\mu)=\sum_{r=0}^{\infty} n_{r} P_{r}(\mu)$

$$
\begin{aligned}
& =\frac{1 / 2}{\sigma+i K \mu} \int_{-1}^{1} \dot{j} \mu^{\prime}\left[\sigma(1+f)+\sum_{n=1}^{\infty} \sigma_{n} P_{n}\left(\mu^{\prime}\right) P_{n}(\mu)\right] \sum_{r=0}^{\infty} n_{r} P_{r}\left(\mu^{\prime}\right) \\
& =\frac{1}{\sigma+\gamma+i k \mu}\left[\sigma(1+f) n_{0}+\sum_{r=1}^{\infty} \frac{\sigma_{r} P_{r}(\mu) n_{r}}{2 r+1}\right]
\end{aligned}
$$

multiplying by $P_{s}(\mu)$ and integrating over μ gives

$$
\begin{align*}
\frac{2}{2 s+2} n_{B}= & \sum_{r=0}^{\infty} \frac{n_{r} \sigma_{r}\left(1+f \delta_{r O}\right)}{2 r+1} \int_{-1}^{1} \frac{d \mu P_{r}(\mu) P_{B}(\mu)}{\sigma+\gamma+i k \mu} \\
= & 2 \sum_{\sum_{5}}^{s} \frac{i_{r} \sigma_{i}\left(1+r \delta_{r O}\right)}{2 r+1} \frac{1}{i k} P_{r}\left(\frac{\sigma+\gamma}{i k}\right) Q_{s}\left(\frac{\sigma+\gamma}{i k}\right) \\
& +2 \sum_{\sum_{2 S+1}^{\infty}}^{\infty} \frac{n_{r} \sigma_{r}}{2 r+1} \frac{1}{i k} P_{S}\left(\frac{\sigma+\gamma}{i k}\right) Q_{r}\left(\frac{\sigma+\gamma}{i k}\right) \tag{6.4}
\end{align*}
$$

II Or may de negiectea for off ooroater than some r_{n}, which will be the one for any rantoning se
beyond ro may be disciardeâ the pemaising equations are a finito set of linear equations which can be solvod for i as a function of the ramaininf variablas. Traking $r_{0}=2$ gives

$$
\begin{aligned}
& \frac{3+1 / \sigma}{1+f^{1}}
\end{aligned}
$$

whare

$$
x=k /(\sigma+\gamma), \quad \phi_{n}=\sigma_{n} /(\sigma+\gamma)
$$

This expression for is has been ovaluated for several values of
 in plausible for the sattoring of neutrons around 2 Mev by havy nuclei (s00 Fige KXI). The values of k resulting ware compared with those objained from the simple characteristic aquation

$$
\frac{1+\gamma / \sigma}{1+1}=\tan ^{-1}(k / \sigma+\gamma) /(k / \sigma+\gamma)
$$

in which a has been taken throughout to be tho transpory average of the cioss section, $\sigma=(Y / 3) \sigma_{1}$, The transport avarage was also used in the dosinition of $f,(y=1) \sigma_{f} / \sigma$. Tho two values of k agree to about one parcent throughout the significent range of γ. Since our knowledge of the Tajious cross sections and thoir angular dependence is fairly rough, this Foild indicate that sufficiently accurate resulta may be obtained by using only the transport eross section throughout the problem.

S2. VELOCITY DEEEMDENCE

To study the effects of volocity spread wa take all crose sections in (6.3) isotropic, or what is approximately equivalent, the transport averages are used throughout.

$$
\begin{align*}
& n(\nabla, \mu)=\frac{1}{\sigma(v)+\gamma / v+i k \mu} \frac{1}{2} \int d v^{\prime} \frac{v^{\prime}}{\nabla} \sigma\left(v^{\prime} \rightarrow \nabla\right) \int d \mu^{\prime} n\left(v^{\prime}, \mu^{\prime}\right) \\
& n(\nabla)=\int_{-1}^{1} d \mu n(\nabla, \mu)=\frac{1}{2} \int_{-1}^{1} \frac{d \mu}{\sigma(\nabla)+\gamma / v+i k \mu} \int d v^{v^{\prime}} \frac{v^{\prime}}{v} \sigma\left(v^{\prime} \rightarrow v\right) n\left(v^{y}\right) \\
& g(\nabla)=\frac{2}{k} \tan ^{-1} \frac{k}{\sigma(v)+\gamma / \nabla} \int d v^{v} \sigma\left(v^{\prime} \rightarrow \nabla\right) g\left(v^{\prime}\right) \tag{6.6}
\end{align*}
$$

where $g(\nabla)=\nabla n(\nabla)$

Shis equation (6.6) can bs solved by itoration accompanied by roadjustment a.t each stage of tho constants ontering. Fith certain choicos of the form of the cross seotion, $\sigma\left(y^{\prime} \longrightarrow V\right)$, it can be solved anelytically. One such is the following, owing to R. Feymman:

$$
\sigma\left(\nabla^{r} \rightarrow \nabla\right) \text { rill consist of three parts, olastic and inolastio }
$$

scattering cross sections and i^{2} times the fisaion crass aoction. The elastic oross section is $\sigma_{\Theta}\left(\nabla^{\sigma}\right) \delta\left(\nabla^{0} \circ \sigma\right)$. The fission cross section is factorable, (M / z) $\sigma_{f}\left(v^{2}\right) X(v)$ (whers χ is normalized to make $\left.\int_{0}^{\infty} d v X(v)=v\right)$ The inelastic scattering cross seotion will bo taken in the form $c_{i}\left(\nabla^{*}\right) \beta(\nabla)$ for $\nabla \leqslant \nabla^{\text {g }}$, zero e? semhere. In this form the normalization

constant has been absorbed in $\sigma_{i}\left(\sigma^{\prime}\right)$. Thus the total cross section is

$$
\sigma(v)=\sigma_{\theta}(v)+\sigma_{r}(v)+\sigma_{i}(v) \int_{0}^{\nabla} d v^{s} B\left(v^{\prime}\right)
$$

Here the only restrictive assumption is that the velocity spectrum of inelastically scattered neutrons depends on the initial velocity only through a scale factor and the position of the high energy cutoff. With this assumption (6.6) becomes

$$
\begin{aligned}
\frac{k}{\tan ^{-1} k /(\sigma(v)+\gamma / v)} g(v) & =\sigma_{\theta}(v) g(v) \because x(v) \int_{0}^{\infty} d v^{\prime} g\left(v^{v}\right) \sigma_{i}\left(v^{v}\right) \\
& * \beta(v) \int_{v}^{\infty} d v^{\prime \prime} g\left(v^{v}\right) \sigma_{i}\left(v^{v}\right)
\end{aligned}
$$

Defining

$$
\begin{aligned}
& F(v)=\frac{g(\nabla)}{\int_{0}^{\infty} d v^{\prime} g\left(v^{v}\right) \sigma_{f}\left(\sigma^{v}\right)}, \quad B(v) G(v)=\frac{k}{\tan ^{-1} k /(\sigma(\tau)+\gamma / v)} \\
& =\sigma_{\theta}(v) \\
& {\left[\frac{k}{\tan ^{-1} k /(\sigma(v)+Y / v)}-\sigma_{\theta}(v)\right] \frac{F(v)}{\beta(v)}=\frac{X(v)}{\beta(v)}+\int_{v}^{\infty} d v^{\prime} \sigma_{i}\left(v^{v}\right) F\left(v^{v}\right)} \\
& \\
& =
\end{aligned}
$$

differentiating with respect to ∇

$$
Q^{Q}(v) F(\nabla)+G(v) F^{v}(\nabla)=\left(\frac{\chi(v)}{\beta(\nabla)}\right)^{\prime} \circ \sigma_{i}(\nabla) F(\nabla)
$$

This solution of this first order linear differential equation is

The definition of $F(v)$ imposes on it the condition

$$
\int_{i}^{\infty} d v F(v) \sigma_{f}(v)=1
$$

Any one of the constants entering into the determination of $F(v), e_{0} g$. k or γ_{0} may be ohosen so as to satisfy this condition.

A very much cruder model than this, but one giving more insight into the effect of the velocity spread, is the following. Ne essume that the total cross section, $\sigma\left(\underline{v}^{\prime} \rightarrow \underline{v}\right)$, as it occurs in (6,6) is factorable.

$$
\sigma\left(\underline{\underline{v}}^{\prime} \rightarrow \underline{v}\right)=\sigma\left(\underline{\underline{v}}^{\prime}\right) \Lambda(\underline{v})(1 \neq \tilde{f})
$$

where $\Lambda(v)$ is normalized to unity. Then

$$
\begin{aligned}
& g(v)=\frac{1}{k} \tan ^{-1} \frac{k}{\sigma(\sigma)+\gamma / v}(1+f) \Lambda(v) \int d v^{v} \sigma\left(v^{v}\right) g\left(\nabla^{v}\right) \\
& (1+f) \int d v \frac{\sigma(v) \Lambda(\nabla)}{k} \tan ^{-1} \frac{k}{\sigma(v)+\gamma / v}=1
\end{aligned}
$$

or

The bracketed oxpression in the integrand will be rocognized as the iunction which the characteristio oquation aguates to unity if only one vaiocity is represented. $\Lambda(v)$ is the volocity spectrum (not as observed et one instant but as produced in each collision). Thus for this model the cheracteristio equation must in this sense bs satisfied in the mean. In ordex to see the type of affect produced by this averaging we took $\sigma(v)$ constant and $\Lambda(v)$ uniform in the thres-dimensional velocity space below a derinite onorgy and zcro above. The integral occurring in (6.9) can then be evaluatod analytically. This gives a relationship botwoen f and X_{0} Eor aach value of X there will exist an average velocity, say V_{Y}, which makes the bracketed expreosion unity for thece values of γ and f. For Very small γ this average velocity must bo the harmonic average. The rasult of this calculation is presented in Fig. XXII. It is aean there that for a sizable range in γ, v_{γ} differs only slightly from the narmonic mean, 2/3. This suggests that in problems involving not too great a spraad in enorgios, e.g. in the metal gadget, the time scale is determined primarily by che harmonic mean velocity of the noutrons emerging from the various ss of colijaions. The above argument is, of course, exceodingly rough and spaat roliance should laced on its result. A rood solution to the prianta awaite tho devolop of a satisifactory many-velocity thery.

THRLLASSFIET

شमा

UNCLASSFFED

sOCle: RT ROOM

REC. FAC \cdots Gee. DATE $6 / 10 / 46$ REC....... *O. REC.

[^0]: * This describes approximately a water tamped water boiler. It is "untamped" in the sense that the integration is carried only over the core.

